Skip to main content
Log in

A fractional derivative-based numerical approach to rate-dependent stress–strain relationship for viscoelastic materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Strain/stress-controlled loading, loadingunloading, loading-relaxation (or creep), and corresponding cyclic tests are essential for characterizing the viscoelastic materials' rate-dependent stress–strain relationship. A three-parameter model is proposed based on the basic definition of fractional derivative viscoelasticity and time-varying viscosity. This model is applied to many complex loading conditions. The solutions for three monocyclic loading conditions are given and then further generalized to arbitrary linear loading conditions, which are assumed to be first-order functions of time. The generalized solution for the arbitrary linear loading path is validated by modelling the mechanical response of cyclic loading–unloading and loading–relaxation (or creep) tests. Four sets of experimental data for polymer materials are employed to demonstrate the proposed fractional derivative model's efficiency. The results show that it can accurately model strain/ stress-controlled response under various loading conditions using only three parameters. The model is then implemented in numerical software to explore its capacity further, and the simulation results show that it also succeeds in simulating cyclic loading–unloading tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Haupt, P.: On the mathematical modelling of material behavior in continuum mechanics. Acta Mech 100, 129–154 (1993). https://doi.org/10.1007/BF01174786

    Article  MathSciNet  MATH  Google Scholar 

  2. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer-Verlag, Berlin Heidelberg (2004). https://doi.org/10.1007/978-3-662-10388-3

    Book  MATH  Google Scholar 

  3. Zhang, C., Moore, I.D.: Nonlinear mechanical response of high density polyethylene Part II Uniaxial constitutive modeling. Polym. Eng. Sci. 37(1997), 414–420 (1997). https://doi.org/10.1002/pen.11684

    Article  Google Scholar 

  4. Brusselle-Dupend, N., Lai, D., Feaugas, X., Guigon, M., Clavel, M.: Mechanical behavior of a semicrystalline polymer before necking Part II Modeling of uniaxial behavior. Polym. Eng. Sci. 43(2003), 501–518 (2003). https://doi.org/10.1002/pen.10041

    Article  Google Scholar 

  5. Lai, D., Yakimets, I., Guigon, M.: A nonlinear viscoelastic model developed for semi-crystalline polymer deformed at small strains with loading and unloading paths. Mater. Sci. Eng. A. 405, 266–271 (2005). https://doi.org/10.1016/j.msea.2005.06.011

    Article  Google Scholar 

  6. Zrida, M., Laurent, H., Rio, G., Pimbert, S., Grolleau, V., Masmoudi, N., Bradai, C.: Experimental and numerical study of polypropylene behavior using an hyper-visco-hysteresis constitutive law. Comput. Mater. Sci. 45, 516–527 (2009). https://doi.org/10.1016/j.commatsci.2008.11.017

    Article  Google Scholar 

  7. Gemant, A.: A method of analyzing experimental results obtained from elasto-viscous bodies. Physics. 7, 311–317 (1936). https://doi.org/10.1063/1.1745400

    Article  Google Scholar 

  8. Blair, G.S., Caffyn, J.E.: VI An application of the theory of quasi-properties to the treatment of anomalous strain-stress relations. Lond. Edinb. Dublin Philos. Mag. J. Sci 40, 80–94 (1949). https://doi.org/10.1080/14786444908561213

    Article  MATH  Google Scholar 

  9. Slonimsky, G.L.: Laws of mechanical relaxation processes in polymers. J. Polym. Sci. Part C Polym. Symp. (1967). https://doi.org/10.1002/polc.5070160342

    Article  Google Scholar 

  10. Smit, W., De Vries, H.: Rheological models containing fractional derivatives. Rheol. Acta. 9, 525–534 (1970). https://doi.org/10.1007/BF01985463

    Article  Google Scholar 

  11. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983). https://doi.org/10.1122/1.549724

    Article  MATH  Google Scholar 

  12. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986). https://doi.org/10.1122/1.549887

    Article  MATH  Google Scholar 

  13. Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984). https://doi.org/10.1115/1.3167616

    Article  MathSciNet  MATH  Google Scholar 

  14. Schiessel, H., Metzler, R., Blumen, A., Nonnenmacher, T.F.: Generalized viscoelastic models: their fractional equations with solutions. J. Phys. Math. Gen. 28, 6567–6584 (1995). https://doi.org/10.1088/0305-4470/28/23/012

    Article  MATH  Google Scholar 

  15. Schmidt, A., Gaul, L.: Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Nonlinear Dyn. 29, 37–55 (2002). https://doi.org/10.1023/A:1016552503411

    Article  MATH  Google Scholar 

  16. Jiang, X., Xu, M., Qi, H.: The fractional diffusion model with an absorption term and modified Fick’s law for non-local transport processes. Nonlinear Anal. Real World Appl. 11, 262–269 (2010). https://doi.org/10.1016/j.nonrwa.2008.10.057

    Article  MathSciNet  MATH  Google Scholar 

  17. Qi, H., Jin, H.: Unsteady helical flows of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear Anal. Real World Appl. 10, 2700–2708 (2009). https://doi.org/10.1016/j.nonrwa.2008.07.008

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, H., Jiang, X.: Creep constitutive models for viscoelastic materials based on fractional derivatives. Comput. Math. Appl. 73, 1377–1384 (2017). https://doi.org/10.1016/j.camwa.2016.05.002

    Article  MathSciNet  MATH  Google Scholar 

  19. Maestro, A., Gonzalez, C., Gutierrez, J.M.: Shear thinning and thixotropy of HMHEC and HEC water solutions. J. Rheol. 46, 1445–1457 (2002). https://doi.org/10.1122/1.1516789

    Article  Google Scholar 

  20. Abu-Jdayil, B.: Modelling the time-dependent rheological behavior of semisolid foodstuffs. J. Food Eng. 57, 97–102 (2003). https://doi.org/10.1016/S0260-8774(02)00277-7

    Article  Google Scholar 

  21. Yang, X., Cai, W., Liang, Y., Holm, S.: A novel representation of time-varying viscosity with power-law and comparative study. Int. J. Non-Linear Mech. 119, 103372 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103372

    Article  Google Scholar 

  22. Yin, D., Wu, H., Cheng, C., Chen, Y.: Fractional order constitutive model of geomaterials under the condition of triaxial test: fractional order constitutive model of geomaterials. Int. J. Numer. Anal. Methods Geomech. 37, 961–972 (2013). https://doi.org/10.1002/nag.2139

    Article  Google Scholar 

  23. Buckingham, M.J.: Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments. J. Acoust. Soc. Am. 108, 2796–2815 (2000). https://doi.org/10.1121/1.1322018

    Article  Google Scholar 

  24. Pandey, V., Holm, S.: Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity. Phys. Rev. E. 94, 032606 (2016). https://doi.org/10.1103/PhysRevE.94.032606

    Article  Google Scholar 

  25. Zhou, H.W., Wang, C.P., Mishnaevsky, L., Duan, Z.Q., Ding, J.Y.: A fractional derivative approach to full creep regions in salt rock. Mech. Time-Depend. Mater. 17, 413–425 (2013). https://doi.org/10.1007/s11043-012-9193-x

    Article  Google Scholar 

  26. Chen, L., Wang, C.P., Liu, J.F., Liu, Y.M., Liu, J., Su, R., Wang, J.: A damage-mechanism-based creep model considering temperature effect in granite. Mech. Res. Commun. 56, 76–82 (2014). https://doi.org/10.1016/j.mechrescom.2013.11.009

    Article  Google Scholar 

  27. Colombaro, I., Garra, R., Giusti, A., Mainardi, F.: Scott-Blair models with time-varying viscosity. Appl. Math. Lett. 86, 57–63 (2018). https://doi.org/10.1016/j.aml.2018.06.022

    Article  MathSciNet  MATH  Google Scholar 

  28. Kang, J., Zhou, F., Liu, C., Liu, Y.: A fractional nonlinear creep model for coal considering damage effect and experimental validation. Int. J. Non-Linear Mech. 76, 20–28 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.05.004

    Article  Google Scholar 

  29. Zhou, H.W., Yi, H.Y., Mishnaevsky, L., Wang, R., Duan, Z.Q., Chen, Q.: Deformation analysis of polymers composites: rheological model involving time-based fractional derivative. Mech. Time-Depend. Mater. 21, 151–161 (2017). https://doi.org/10.1007/s11043-016-9323-y

    Article  Google Scholar 

  30. Zhang, C., Moore, I.D.: Nonlinear mechanical response of high density polyethylene Part I Experimental investigation and model evaluation. Polym. Eng. Sci 37, 404–413 (1997). https://doi.org/10.1002/pen.11683

    Article  Google Scholar 

  31. Ruggles-Wrenn, M.B., Balaconis, J.G.: Some aspects of the mechanical response of BMI 5250–4 neat resin at 191 °C: Experiment and modeling. J. Appl. Polym. Sci. 107, 1378–1386 (2008). https://doi.org/10.1002/app.27174

    Article  Google Scholar 

  32. Chen, K., Kang, G., Lu, F., Jiang, H.: Uniaxial cyclic deformation and internal heat production of ultra-high molecular weight polyethylene. J. Polym. Res. 22, 217 (2015). https://doi.org/10.1007/s10965-015-0870-8

    Article  Google Scholar 

  33. Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense—MATLAB lsqcurvefit—MathWorks China, (n.d.). https://ww2.mathworks.cn/help/optim/ug/lsqcurvefit.html?lang=en (accessed October 15, 2020)

  34. Colak, O.U., Dusunceli, N.: Modeling viscoelastic and viscoplastic behavior of high density polyethylene (HDPE). J. Eng. Mater. Technol. 128, 572–578 (2006). https://doi.org/10.1115/1.2345449

    Article  Google Scholar 

Download references

Acknowledgements

The present work is supported by the National Natural Science Foundation of China 51674266, the State Key Research Development Program of China 2016YFC0600704, and the Yueqi Outstanding Scholar Program of CUMTB 2017A03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, T., Zhou, H., Zhao, J. et al. A fractional derivative-based numerical approach to rate-dependent stress–strain relationship for viscoelastic materials. Acta Mech 232, 2347–2359 (2021). https://doi.org/10.1007/s00707-021-02946-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02946-1

Navigation