Skip to main content
Log in

Small-scale oriented elasticity modeling of functionally graded rotating micro-disks with varying angular velocity in the context of the strain gradient theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

During the varying angular speed timespans of the start or shutdown of rotating machinery, the machinery components may be subjected to intense mechanical loadings which should be taken into account by its fabricator in the designing processes. In the microscale rotating systems, where the angular velocity is typically very high, the importance of this issue is much higher. In this paper, a comprehensive strain-gradient elasticity formulation is presented for functionally graded rotating micro-disks under the effects of varying angular velocity. The gradation of the constituent material along the radial direction can be a helpful option to mitigate the stresses in rotating micro-disks under high mechanical loadings. The material properties and the thickness of the disk can arbitrarily vary along the radial direction. The effects of the material gradient index and the thickness profile of rotating micro-disks on the distribution of classical and higher-order stresses are examined. Moreover, the differences between the predicted responses from the strain gradient elasticity and from the classical continuum mechanics are highlighted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kordkheili, S.H., Naghdabadi, R.: Thermoelastic analysis of a functionally graded rotating disk. Compos. Struct. 79(4), 508–516 (2007)

    MATH  Google Scholar 

  2. Jomehzadeh, E., Saidi, A., Atashipour, S.R.: An analytical approach for stress analysis of functionally graded annular sector plates. Mater. Des. 30(9), 3679–3685 (2009)

    MATH  Google Scholar 

  3. Lee, C.-Y., Kim, J.-H.: Hygrothermal postbuckling behavior of functionally graded plates. Compos. Struct. 95, 278–282 (2013)

    Google Scholar 

  4. Zheng, Y., Bahaloo, H., Mousanezhad, D., Mahdi, E., Vaziri, A., Nayeb-Hashemi, H.: Stress analysis in functionally graded rotating disks with non-uniform thickness and variable angular velocity. Int. J. Mech. Sci. 119, 283–293 (2016)

    Google Scholar 

  5. Dai, T., Dai, H.-L.: Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed. Appl. Math. Model. 40(17–18), 7689–7707 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Bagheri, E., Jahangiri, M.: Analysis of in-plane vibration and critical speeds of the functionally graded rotating disks. Int. J. Appl. Mech. 11(02), 1950020 (2019)

    Google Scholar 

  7. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    MathSciNet  MATH  Google Scholar 

  8. Mindlin, R.D., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    MATH  Google Scholar 

  9. Kahrobaiyan, M., Asghari, M., Ahmadian, M.: A strain gradient Timoshenko beam element: application to MEMS. Acta Mech. 226(2), 505–525 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Asghari, M., Kahrobaiyan, M., Nikfar, M., Ahmadian, M.: A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech. 223(6), 1233–1249 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Akgöz, B., Civalek, Ö.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224(9), 2185–2201 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Dadgar-Rad, F., Beheshti, A.: A nonlinear strain gradient finite element for microbeams and microframes. Acta Mech. 228(5), 1941–1964 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Borjalilou, V., Asghari, M.: Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory. Int. J. Appl. Mech. 11(01), 1950007 (2019)

    Google Scholar 

  14. Borjalilou, V., Asghari, M., Bagheri, E.: Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J. Therm. Stresses 42(7), 801–814 (2019)

    Google Scholar 

  15. Akgöz, B., Civalek, Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226(7), 2277–2294 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Farajpour, A., Yazdi, M.H., Rastgoo, A., Mohammadi, M.: A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech. 227(7), 1849–1867 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Xu, X.-J., Deng, Z.-C., Meng, J.-M., Zhang, K.: Bending and vibration analysis of generalized gradient elastic plates. Acta Mech. 225(12), 3463–3482 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Mohammadi, M., Mahani, M.F.: An analytical solution for buckling analysis of size-dependent rectangular micro-plates according to the modified strain gradient and couple stress theories. Acta Mech. 226(10), 3477–3493 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Mousavi, S., Reddy, J., Romanoff, J.: Analysis of anisotropic gradient elastic shear deformable plates. Acta Mech. 227(12), 3639–3656 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Borjalilou, V., Asghari, M.: Thermoelastic damping in strain gradient microplates according to a generalized theory of thermoelasticity. J. Therm. Stresses 43(4), 401–420 (2020)

    Google Scholar 

  21. Hosseini, M., Shishesaz, M., Hadi, A.: Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness. Thin-Walled Struct. 134, 508–523 (2019)

    Google Scholar 

  22. Bagheri, E., Asghari, M., Danesh, V.: Analytical study of micro-rotating disks with angular acceleration on the basis of the strain gradient elasticity. Acta Mech. 230(9), 3259–3278 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Danesh, V., Asghari, M.: Analysis of micro-rotating disks based on the strain gradient elasticity. Acta Mech. 225(7), 1955–1965 (2014)

    MATH  Google Scholar 

  24. Bagheri, E., Jahangiri, M., Asghari, M.: Effects of couple stresses on the in-plane vibration of micro-rotating disks. J. Vib. Cont. (2020). https://doi.org/10.1177/1077546319892426

    Article  MathSciNet  MATH  Google Scholar 

  25. Jahangiri, M., Asghari, M., Bagheri, E.: Torsional vibration induced by gyroscopic effect in the modified couple stress based micro-rotors. European J. Mech.-A/Solids 81, 103907 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Hashemi, M., Asghari, M.: Investigation of the small-scale effects on the three-dimensional flexural vibration characteristics of a basic model for micro-engines. Acta Mech. 226(9), 3085–3096 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Ramezani, S.: A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory. Int. J. Non-Linear Mech. 47(8), 863–873 (2012)

    Google Scholar 

  28. Zheng, Y., Zhang, H., Chen, Z., Ye, H.: Size and surface effects on the mechanical behavior of nanotubes in first gradient elasticity. Compos. B Eng. 43(1), 27–32 (2012)

    Google Scholar 

  29. Tsai, N.-C., Liou, J.-S., Lin, C.-C., Li, T.: Analysis and fabrication of reciprocal motors applied for microgyroscopes. J. Micro/Nanolithogr. MEMS MOEMS 8(4), 043046 (2009)

    Google Scholar 

  30. Tsai, N.-C., Liou, J.-S., Lin, C.-C., Li, T.: Design of micro-electromagnetic drive on reciprocally rotating disc used for micro-gyroscopes. Sens. Actuators, A 157(1), 68–76 (2010)

    Google Scholar 

  31. Tsai, N.-C., Liou, J.-S., Lin, C.-C., Li, T.: Suppression of dynamic offset of electromagnetic drive module for micro-gyroscope. Mech. Syst. Signal Process. 25(2), 680–693 (2011)

    Google Scholar 

  32. Lee, S., Kim, D., Bryant, M.D., Ling, F.F.: A micro corona motor. Sens. Actuators, A 118(2), 226–232 (2005)

    Google Scholar 

  33. Hosseini, M., Shishesaz, M., Tahan, K.N., Hadi, A.: Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials. Int. J. Eng. Sci. 109, 29–53 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Baghani, M., Heydarzadeh, N., Roozbahani, M.: Stress analysis of a functionally graded micro/nanorotating disk with variable thickness based on the strain gradient theory. Int. J. Appl. Mech. 8(02), 1650020 (2016)

    Google Scholar 

  35. Saharan, A., Ostoja-Starzewski, M., Koric, S.: Fractal geometric characterization of functionally graded materials. J. Nanomech. Micromech. 3(4), 04013001 (2013)

    Google Scholar 

  36. Saharan, A.: Homogenization and elastic-plastic transitions in random and FGM microstructures. University of Illinois at Urbana-Champaign (2015)

  37. Harrison, H., Nettleton, T.: Advanced engineering dynamics. Butterworth-Heinemann, (1997)

  38. Reid, S.: On the influence of acceleration stresses on the yielding of disks of uniform thickness. Int. J. Mech. Sci. 14(11), 755–763 (1972)

    Google Scholar 

  39. Reddy, T.Y., Srinath, H.: Effect of acceleration stresses on the yielding of rotating disks. Int. J. Mech. Sci. 16(8), 593–596 (1974)

    Google Scholar 

  40. Tang, S.: Note on acceleration stress in a rotating disk. Int. J. Mech. Sci. 12(2), 205–207 (1970)

    Google Scholar 

  41. Dai, T., Dai, H.-L.: Investigation of mechanical behavior for a rotating FGM circular disk with a variable angular speed. J. Mech. Sci. Technol. 29(9), 3779–3787 (2015)

    Google Scholar 

  42. Zheng, Y., Bahaloo, H., Mousanezhad, D., Vaziri, A., Nayeb-Hashemi, H.: Displacement and stress fields in a functionally graded fiber-reinforced rotating disk with nonuniform thickness and variable angular velocity. J. Eng. Mat. Technol. (2017). https://doi.org/10.1115/1.4036242

    Article  Google Scholar 

  43. Hosseini, M., Dini, A., Eftekhari, M.: Strain gradient effects on the thermoelastic analysis of a functionally graded micro-rotating cylinder using generalized differential quadrature method. Acta Mech. 228(5), 1563–1580 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Murmu, T., Pradhan, S.: Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Physica E 41(7), 1232–1239 (2009)

    Google Scholar 

  45. Mohammadimehr, M., Monajemi, A., Moradi, M.: Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-Pasternak foundation using DQM. J. Mech. Sci. Technol. 29(6), 2297–2305 (2015)

    Google Scholar 

  46. Bayat, M., Sahari, B., Saleem, M., Dezvareh, E., Mohazzab, A.: Analysis of functionally graded rotating disks with parabolic concave thickness applying an exponential function and the Mori-Tanaka scheme. In: IOP Conference Series: Materials Science and Engineering 2011, vol. 1, p. 012005. IOP Publishing

  47. Bayat, M., Saleem, M., Sahari, B., Hamouda, A., Mahdi, E.: Analysis of functionally graded rotating disks with variable thickness. Mech. Res. Commun. 35(5), 283–309 (2008)

    MATH  Google Scholar 

  48. Ramezani, S.: Nonlinear vibration analysis of micro-plates based on strain gradient elasticity theory. Nonlinear Dyn. 73(3), 1399–1421 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Gholami, R., Ansari, R.: A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates. Nonlinear Dyn. 84(4), 2403–2422 (2016)

    MathSciNet  Google Scholar 

  50. Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    MATH  Google Scholar 

  51. Wang, B., Zhou, S., Zhao, J., Chen, X.: A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. European J. Mech. A/Solids 30(4), 517–524 (2011)

    MATH  Google Scholar 

  52. Kahrobaiyan, M., Asghari, M., Rahaeifard, M., Ahmadian, M.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49(11), 1256–1267 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Kahrobaiyan, M., Asghari, M., Ahmadian, M.: Strain gradient beam element. Finite Elem. Anal. Des. 68, 63–75 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Asghari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, E., Asghari, M., Kargarzadeh, A. et al. Small-scale oriented elasticity modeling of functionally graded rotating micro-disks with varying angular velocity in the context of the strain gradient theory. Acta Mech 232, 2395–2416 (2021). https://doi.org/10.1007/s00707-021-02945-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02945-2

Navigation