Skip to main content
Log in

On nonlocal fractal laminar steady and unsteady flows

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, we join the concept of fractality introduced by Li and Ostoja-Starzewski with the concept of nonlocality to produce a new set of nonlocal fractal fluid equations of motion. Both the unsteady and steady laminar flows are discussed. It is revealed that a damped wave equation emerges from the nonlocal fractal Navier–Stokes equation, a result which could lead to a better understanding of fluids turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The author confirms the absence of sharing data.

References

  1. Sreenivasan, K.R., Meneveau, C.: The fractal facets of turbulence. J. Fluid Mech. 173, 357–386 (1986)

    MathSciNet  Google Scholar 

  2. Falconer, K.F.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  3. Feder, J.: Fractals. Plenum Press, New York (1988)

    MATH  Google Scholar 

  4. Carpinteri, A., Mainardi, G. (eds.): Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    MATH  Google Scholar 

  5. Tarasov, V.E.: Flow of fractal fluid in pipes: non-integer dimensional space approach. Chaos Solitons Fractals 67, 26–37 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Lazopoulos, K.A., Lazopoulos, A.K.: Fractional vector calculus and fluid mechanics. J. Mech. Behav. Mater. 26, 43–54 (2017)

    Google Scholar 

  7. Li, J., Ostoja-Starzewski, M.: Thermo-poromechanics of fractal media. Phil. Trans. R. Soc. A 378, 20190288 (2020)

    MathSciNet  Google Scholar 

  8. Balankin, A.S., Elizarraraz, B.E.: Map of fluid flow in fractal porous medium into fractal continuum flow. Phys. Rev. E 85, 056314 (2012)

    Google Scholar 

  9. Butera, S., di Paola, M.: A physically based connection between fractional calculus and fractal geometry. Ann. Phys. 350, 146–158 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Balankin, A.S., Nena, B., Susarrey, O., Samayoa, D.: Steady laminar flow of fractal fluids. Phys. Lett. A 381, 623–638 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2010)

    MATH  Google Scholar 

  12. Gibson, R.L., Toksoz, M.N.: Permeability estimation from velocity anisotropy in fractured rock. J. Geophys. Res. 95, 15643–15655 (1990)

    Google Scholar 

  13. Huh, K., Oh, D., Son, S.Y., et al.: Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle. Micro and Nano Syst. Lett. 4, 1 (2016)

    Google Scholar 

  14. Galindo-Torres, S.A., Scheuermann, A., Li, L.: Numerical study on the permeability in a tensorial form for laminar flow in anisotropic porous media. Phys. Rev. E 86, 046306 (2012)

    Google Scholar 

  15. Khalil, R., Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Chen, W.: Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 28, 923–929 (2006)

    MATH  Google Scholar 

  17. Goddard, J.D.: A weakly nonlocal anisotropic fluid model for inhomogeneous Stokesian suspensions. Phys. Fluids 20, 040601 (2008)

    MATH  Google Scholar 

  18. Viallat, A., Abkarian, M.: Dynamics of Blood Cell Suspensions in Microflows. CRC Press, Boca Raton (2019)

    Google Scholar 

  19. Cemal Eringen, A.: On nonlocal microfluid mechanics. Int. J. Eng. Sci. 11, 291–306 (1973)

    MathSciNet  MATH  Google Scholar 

  20. El-Nabulsi, R.A.: Dynamics of pulsatile flows through microtubes from nonlocality. Mech. Res. Commun. 86, 18–26 (2017)

    Google Scholar 

  21. Adams, D.J.: Particle trajectories in classical fluid are not anomalously fractal. Mol. Phys. 59, 1277–1281 (1986)

    Google Scholar 

  22. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 561–575 (1972)

    MATH  Google Scholar 

  23. Speziale, C.G., Eringen, A.C.: Nonlocal fluid mechanics description of wall turbulence. Comput. Math. Appl. 7, 27–41 (1981)

    MathSciNet  MATH  Google Scholar 

  24. Hansen, J.S., Daivis, P.J., Travis, K.P., Todd, B.P.: Parameterization of the nonlocal viscosity kernel for an atomic fluid. Phys. Rev. E 76, 041121 (2007)

    Google Scholar 

  25. Eidelman, S.D., Ivasyshen, S.D., Kochubei, A.N.: Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, Volume 152 of Operator Theory: Advances and Applications, vol. 152. Birkhäuser Verlag, Basel (2004)

    MATH  Google Scholar 

  26. Suykens, J.A.K.: Extending Newton’s law from nonlocal-in-time kinetic energy. Phys. Lett. A 373, 1201–1211 (2009)

    MATH  Google Scholar 

  27. Kamalov, T.F.: Classical and quantum-mechanical axioms with the higher time derivative formalism. J. Phys. Conf. Ser. 442, 012051 (2013)

    Google Scholar 

  28. Kamalov, T.F.: Model of extended mechanics and non-local hidden variables for quantum theory. J. Russ. Laser Res. 30, 466–471 (2009)

    Google Scholar 

  29. Kamalov, T.F.: Quantum corrections of Newton’s law of motion. Symmetry 12, 63 (2020)

    Google Scholar 

  30. El-Nabulsi, R.A.: Free variable mass nonlocal systems, jerks and snaps, and their implications in rotating fluids in rockets. Acta Mech. (2020). https://doi.org/10.1007/s00707-020-02843-z

    Article  Google Scholar 

  31. El-Nabulsi, R.A., Moaaz, O., Bazighifan, O.: New results for oscillatory behavior of fourth-order differential equations. Symmetry 12, 136 (2020)

    Google Scholar 

  32. Bazighifan, P., Moaaz, O., El-Nabulsi, R.A., Muhib, A.: Some new oscillation results for fourth-order neutral differential equations with delay argument. Symmetry 12, 1248 (2020)

    Google Scholar 

  33. Moaaz, O., El-Nabulsi, R.A., Bazighifan, O.: Oscillatory behavior of fourth-order differential equations with neutral delay. Symmetry 12, 371 (2020)

    Google Scholar 

  34. Moaaz, O., El-Nabulsi, R.A., Bazighifan, O.: Behavior of non-oscillatory solutions of fourth-order neutral differential equations. Symmetry 12, 477 (2020)

    Google Scholar 

  35. El-Nabulsi, R.A.: Quantum LC-circuit satisfying the Schrödinger–Fisher–Kolmogorov equation and quantization of DC-dumper Josephson parametric amplifier. Phys. E Low Dimens. Syst. Microstruct. 112, 115–120 (2019)

    Google Scholar 

  36. El-Nabulsi, R.A.: Fourth-order Ginzburg–Landau differential equation a la Fisher–Kolmogorov and its implications in superconductivity. Phys. C Supercond. Appl. 567, 1353545 (2019)

    Google Scholar 

  37. El-Nabulsi, R.A.: Nonlocal-in-time kinetic energy description of superconductivity. Phys. C Supercond. Appl. 577, 1353716 (2020)

    Google Scholar 

  38. El-Nabulsi, R.A.: On nonlocal complex Maxwell equations and wave motion in electrodynamics and dielectric media. Opt. Quantum Electron. 50, 170 (2018)

    Google Scholar 

  39. Dong, B.-Q., Chen, Z.-M.: On upper and lower bounds of higher-order derivatives for solutions to the 2D micropolar fluid equations. J. Math. Anal. Appl. 334, 1386–1399 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Khalil, N., Garz, V., Santos, A.: Hydrodynamic Burnett equations for inelastic Maxwell models of granular gases. Phys. Rev. E 89, 052201 (2014)

    Google Scholar 

  41. Gorban, A.N., Karlin, I.V.: Beyond Navier–Stokes equations: capillarity of ideal gas. Contemp. Phys. 58, 70–90 (2017)

    Google Scholar 

  42. Feynman, R.P.: Space-time approach to relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    MathSciNet  MATH  Google Scholar 

  43. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1996)

    Google Scholar 

  44. Li, Z.-Y., Fu, J.-L., Chen, L.-Q.: Euler–Lagrange equation from nonlocal-in-time kinetic energy of nonconservative system. Phys. Lett. A 374, 106–109 (2009)

    MathSciNet  MATH  Google Scholar 

  45. El-Nabulsi, R.A.: Non-standard non-local-in-time Lagrangians in classical mechanics. Qual. Theor. Dyn. Syst. 13, 149–160 (2014)

    MathSciNet  MATH  Google Scholar 

  46. El-Nabulsi, R.A.: Complex backward–forward derivative operator in non-local-in-time Lagrangians mechanics. Qual. Theor. Dyn. Syst. 16, 223–234 (2016)

    MathSciNet  MATH  Google Scholar 

  47. El-Nabulsi, R.A.: Nonlocal-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, jerk and snap and oscillatory motions in the rotating fluid tube. Int. J. Nonlinear Mech. 93, 65–81 (2017)

    Google Scholar 

  48. El-Nabulsi, R.A.: Orbital dynamics satisfying the 4th order stationary extended Fisher–Kolmogorov equation. Astrodyn. 4, 31–39 (2020)

    Google Scholar 

  49. El-Nabulsi, R.A.: Fractional nonlocal Newton’s law of motion and emergence of Bagley–Torvik equation. J. Peridyn. Nonlocal Model. 2, 50–58 (2020)

    Google Scholar 

  50. El-Nabulsi, R.A.: Nonlocal wave equations from a non-local complex backward–forward derivative operator. Waves Complex Rand. Med. (2019). https://doi.org/10.1080/17455030.2019.16

    Article  Google Scholar 

  51. El-Nabulsi, R.A.: Jerk in Planetary systems and rotational dynamics, nonlocal motion relative to earth and nonlocal fluid dynamics in rotating earth frame. Earth Moon Planet. 122, 15–41 (2018)

    Google Scholar 

  52. El-Nabulsi, R.A.: Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics. Adv. Space Res. 61, 2914–2931 (2018)

    Google Scholar 

  53. Sreenivasan, K.R.: Fractals in fluid mechanics. Fractals 2, 253–263 (1994)

    MathSciNet  MATH  Google Scholar 

  54. Sreenivasan, K.R.: Fractals and multifractals in fluid turbulence. Ann. Rev. Fluid Mech. 23, 539–600 (1991)

    MathSciNet  Google Scholar 

  55. Kerr, R.M.: Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 31–58 (1985)

    MATH  Google Scholar 

  56. Agrawal, R.K.: BGK-Burnett equations: a new set of second-order hydrodynamic equations for flows in continuum-transition regime. In: Abdallah, N.B. (ed.) Transport in Transition Regimes. The IMA Volumes in Mathematics and Its Applications, vol. 135. Springer, New York (2004)

    Google Scholar 

  57. Agrawal, R.K., Yun, K.-Y.: Burnett equations for simulation of transitional flows. Appl. Mech. Rev. 55, 219–240 (2000)

    Google Scholar 

  58. Pnueli, D., Gutfinger, C.: Fluid Mechanics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  59. Miranda, A.I.P., Oliveira, P.J., Pinho, F.T.: Steady and unsteady laminar flows of Newtonian and generalized Newtonian fluids in a planar T-junction. Int. J. Numer. Methods Fluids 57, 295–328 (2008)

    MathSciNet  MATH  Google Scholar 

  60. Ramana Murthy, C.V., Kulkarni, S.B.: Unsteady laminar flow of visco-elastic fluid of second order type between two parallel plates. Ind. J. Eng. Mater. Sci. 12, 51–57 (2005)

    Google Scholar 

  61. Park, J.K., Park, S.O., Hyun, J.M.: Flow regimes of unsteady laminar flow past a slender elliptic cylinder at incidence. Int. J. Heat Fluid Flow 10, 311–317 (1989)

    Google Scholar 

  62. Das, D., Arakeri, J.H.: Unsteady laminar duct flow with a given volume rate variation. J. Appl. Mech. 67, 274–281 (2000)

    MATH  Google Scholar 

  63. Gupta, P.C.: Unsteady, laminar flow of a viscous incompressible fluid through porous media in a hexagonal channel. Current Sci. 49, 295–297 (1980)

    Google Scholar 

  64. Shapiro, A.: An analytical solution of the Navier-Stokes equations for unsteady backward stagnation-point flow with injection or suction. Z. Angew. Math. Mech. 86, 281–290 (2006)

    MathSciNet  MATH  Google Scholar 

  65. Cannarsa, P., de Prato, F., Zolesio, J.-P.: The damped wave equation in a moving domain. J. Differ. Equ. 85, 1–16 (1990)

    MathSciNet  MATH  Google Scholar 

  66. Selvadurai, A.P.S.: Partial Differential Equations in Mechanics 1. Springer-Verlag, Berlin (2000)

    MATH  Google Scholar 

  67. Che, T.-C., Duan, H.-F.: Evaluation of plane wave assumption in transient laminar pipe flow modeling and utilization. Proc. Eng. 154, 959–966 (2016)

    Google Scholar 

  68. Tikoja, H., Auriemma, F., Lavrentjev, J.: Damping of acoustic waves in straight ducts and turbulent flow conditions, SAE Technical Paper 2016-01-1816, (2016)

  69. Boonen, R., Sas, P., Vandenbulck, E.: Determination of the acoustic damping characteristics of an annular tail pipe. In: Proceedings of ISMA2010 Including USD2010 Conference. ISMA2010, Leuven, 20–22 September 2010 (art.nr. 684) (pp. 47–57)

  70. Ogawa, A., Tokiwa, S., Mutou, M., et al.: Damped oscillation of liquid column in vertical U-tube for Newtonian and non-Newtonian liquids. J. Therm. Sci. 16, 289–300 (2007)

    Google Scholar 

  71. Borodulin, V.I., Kachanov, Y.S., Roschektayev, P.: Experimental detection of deterministic turbulence. J. Turbul. 12, Article N23 (2011)

  72. Mahady, K., Afkhami, S., Diez, S., Kondic, L.: Comparison of Navier–Stokes simulations with long-wave theory: study of wetting and dewetting. Phys. Fluids 25, 112103 (2013)

    MATH  Google Scholar 

  73. Li, J., Ostoja-Starzewski, M.: Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465, 2521–2536 (2009)

    MathSciNet  MATH  Google Scholar 

  74. Ostoja-Starzewski, M.: On turbulence in fractal porous media. ZAMP 59, 1111–1117 (2008)

    MathSciNet  MATH  Google Scholar 

  75. Li, J., Ostoja-Starzewski, M.: Micropolar continuum mechanics of fractal media. Int. J. Eng. Sci. 49, 1302–1310 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The author received no direct funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. On nonlocal fractal laminar steady and unsteady flows. Acta Mech 232, 1413–1424 (2021). https://doi.org/10.1007/s00707-020-02929-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02929-8

Mathematics Subject Classification

Navigation