Skip to main content
Log in

Intergranular void ratio and undrained monotonic behavior of Chlef sand containing low plastic fines

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Stability analysis of soils prone to static liquefaction based on their monotonic undrained shear strength characteristics is an indispensable challenge in earthquake geotechnical engineering. This paper presents a laboratory study on the static behavior of Chlef sand–silt mixtures (with a silt content fc range from 0 to 50%); under low confining pressures. The experimental program includes undrained triaxial monotonic tests which were carried out for five types of samples, consolidated under different confining pressures (σʹc = 20, 50, 100, 150, and 200 kPa). On the samples preparation, the dry pluviation funnel has been used with a medium relative density (Dr = 60%). Main results obtained indicate that the fines content and initial confining pressure have a significant influence on instability stress and steady-state ratios of sand–silt mixtures. Moreover, the obtained data confirm the existence of a simple correlation between undrained instability stress, steady-state ratios, fines content, void ratios, and effective confining pressure. From the results obtained, nevertheless it can be concluded that the global void ratio does not represent the actual behavior of the soil under study, and the undrained residual strength decreases with a logarithmic manner with the increase of the intergranular void ratio, and a similar trend is occurring with the fine content of the sand–silt mixtures up to 50% as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

C c :

Coefficient of gradation

C u :

Uniformity coefficient (Cu = D60/D10)

b :

Active fraction of fines in force structure

D 10 :

Effective grain diameter

D 30 :

Grain size corresponding to 30% finer

D 60 :

Grain size corresponding to 60% finer

D 50 :

Mean grain size

D :

Diameter of the sample

Dr:

Relative density

ε a :

Axial strain

e max :

Maximum void ratio

e min :

Minimum void ratio

e :

Global void ratio

e g :

Intergranular void ratio

e* :

Equivalent granular void ratio

f c :

Fines content

TFC:

Threshold fines content in decimal

φ SS :

Steady-state friction angle

H :

Height of the sample

χ :

Particle size ratio, χ = D10/d50

r :

Particle size ratio, r = (1/χ) = d50/D10

PI:

Plasticity index

σʹ c :

Initial effective confining pressure

:

Effective mean pressure

q :

Deviator stress

q S S :

Deviatoric stress at steady state

γ s :

Unit weight of solids

Δu :

Excess pore water pressure

DEP:

Dry funnel pluviation

WT:

Wet tamping

V T :

Volume of device cell

m S :

Weight of the sample used in test on gr

B :

Skempton coefficient

S us :

Residual shear stress

q S :

Deviatoric stress at the quasi-steady state

φ S :

Mobilized friction angle at the quasi-steady state

QSS:

Quasi-steady state

SSL:

Steady-state lines

q S S (ult):

Ultimate shear strength

Δu (ult):

Pore water pressure at the ultimate conditions of the tests

References

  1. Amini, F., Qi, G.Z.: Liquefaction testing of layered silty sands. J. Geotech. Eng. ASCE 126(3), 208–217 (2000)

    Article  Google Scholar 

  2. Aouali, N., Benessalah, I., Arab, A., Ali, B., Abed, M.: Shear strength response of fibre reinforced Chlef (Algeria) silty sand: laboratory study. Geotech. Geol. Eng. (2018). https://doi.org/10.1007/s10706-018-0641-5

    Article  Google Scholar 

  3. Arab, A., Sadek, M., Belkhatir, M., Shahrour, I.: Monotonic preloading effect on the liquefaction resistance of silty sand: a laboratory study. Arab. J. Sci. Eng. 2014(39), 685–694 (2014). https://doi.org/10.1007/s13369-013-0700-4

    Article  Google Scholar 

  4. Arab, A.: Monotonic and cyclic behaviour of silty sand. C. R. Mecanique 337(2009), 621–631 (2009)

    Article  Google Scholar 

  5. ASTM D854-83: Standard test method for specific gravity of soils. Annual Book of Standards, Vol. 04.08. ASTM, West Conshohoken, pp. 162–164.

  6. ASTM D422-63: Standard method for particle-size analysis of soils. Annual Book of Standards, Vol. 04.08. ASTM, West Conshohoken, pp. 86–92.

  7. Belkhatir, M., Arab, A., Schanz, T., Missoum, H., Della, N.: Laboratory study on the liquefaction resistance of sand–silt mixtures: effect of grading characteristics. Granular Matter 13(5), 599–609 (2011)

    Article  Google Scholar 

  8. Benahmed, N., Nguyen, T., Hicher, P., Nicolas, M.: An experimental investigation into the effects of low plastic fines content on the behaviour of sand/silt mixtures. Eur. J. Environ. Civil Eng. 19, 109–128 (2015). https://doi.org/10.1080/19648189.2014.939304

    Article  Google Scholar 

  9. Benessalah, I., Sadek, M., Villard, P., Arab, A.: Undrained triaxial compression tests on three-dimensional reinforced sand: effect of the geocell height. Eur. J. Environ. Civil Eng. (2020). https://doi.org/10.1080/19648189.2020.1728581

    Article  Google Scholar 

  10. Benessalah, I., Arab, A., Sadek, M., Bouferra, R.: Laboratory study on the compressibility of sand–rubber mixtures under one dimensional consolidation loading conditions. Granular Matter 21, 7 (2019). https://doi.org/10.1007/s10035-018-0860-8

    Article  Google Scholar 

  11. Benessalah, I.: Comportement des interfaces géosynthétiques sous chargement dynamique due à l’impact. PhD thesis, Faculty of Civil engineering and Architecture. University of Chlef 2017 (2017)

  12. Bobei, D.C., Lo, S.R.: Reverse behaviour and critical state of sand with small amount of fines. In: The Proceedings of the 16thInternational Conference on Soil Mechanics and Geotechnical Engineering (16ICSMGE), Japan, pp. 475–478 (2005)

  13. Bouferra, R., Shahrour, I.: Influence of fines on the resistance to liquefaction of a clayey sand. Ground Improvement 8(1), 1–5 (2004)

    Article  Google Scholar 

  14. Boutouba, K., Benessalah, I., Arab, A., Djafar Henni, A.: Shear strength enhancement of cemented reinforced sand: role of cement content on the macro-mechanical behavior. Stud. Geotech. Mech. 41(4), 200–211 (2019)

    Article  Google Scholar 

  15. Cubrinovski, M., Ishihara, K.: Flow potential of sandy soils with different grain compositions. Soils Found. 40(4), 103–119 (2000)

    Article  Google Scholar 

  16. Della, N., Belkhatir, M., Arab, A., Canou, J., Dupla, J.-C.: Effect of fabric method on instability behavior of granular material. Acta Mech. 225, 2043–2057 (2014). https://doi.org/10.1007/s00707-013-1083-z

    Article  Google Scholar 

  17. Della, N., Arab, A., Belkhatir, M.: Static liquefaction of sandy soil: an experimental investigation into the effects of saturation and initial state. Acta Mech 218, 175–186 (2011). https://doi.org/10.1007/s00707-010-0410-x

    Article  MATH  Google Scholar 

  18. Dezfulian H.: Effects of silt content on dynamic properties of sandy soils. In: Proceedings 8th World Conference on Earthquake Engineering, pp. 63–70 (1982)

  19. Georgiannou, V.N., Burland, J.B., Hight, D.W.: The undrained behaviour of clayey sands in triaxial compression and extension. Géotechnique 40(3), 431–449 (1990)

    Article  Google Scholar 

  20. Hazirbaba, K.: Pore pressure generation characteristics of sands and silty sands: a strain approach, p. 232. University of Texas, Austin (2005). PhD Thesis

    Google Scholar 

  21. Huang, Y.-T., Huang, A.-B., Kuo, Y.-C., Tsai, M.-D.: A laboratory study on the undrained strength of silty sand from Central Western Taiwan. Soil Dyn. Earthq. Eng. 24, 733–743 (2004)

    Article  Google Scholar 

  22. Ishihara, K.: Liquefaction and flow failure during earthquakes, The 33rd Rankine lecture. Geotechnique 43(3), 351–415 (1993)

    Article  Google Scholar 

  23. Ishihara, K., Tatsuoka, F., Yasuda, S.: Undrained deformation and liquefaction of sand under cyclic stresses. Soils Found. 18(1), 57–72 (1975)

    Article  Google Scholar 

  24. Kenney, T.C.: Residual strength of mineral mixture. In: Proc. 9th International Conference of Soil Mechanics and Foundation Engineering, vol. 1, pp. 155–160 (1977)

  25. Koester, J.P.: The influence of fine type and content on cyclic strength. Ground failures under seismic condition. Geotechnical Special Publication N° 44. ASCE, pp. 17–33 (1994)

  26. Kuerbis, R., Negussey, D., Vaid, Y.P.: Effect of gradation and fine content on the undrained response of sand. In: Zul, D.J.A.V., Vick, S.G. (eds.) Hydraulic fill structure, Geotechnical Special Publication 21, pp. 330–345. ASCE, New York (1988)

    Google Scholar 

  27. Lade, P.V., Yamamuro, J.A.: Effects of non-plastic fines on static liquefaction of sands. Can. Geotech. J. 34, 918–928 (1997)

    Article  Google Scholar 

  28. Law, K.T., Ling, Y.H.: Liquefaction of granular soils with non-cohesive and cohesive fines. In: Proceedings of the 10th World Conference on Earthquake Engineering, Rotterdam, pp. 1491–1496 (1992)

  29. Merabet, K., Benessalah, I., Chemmam, M., Arab, A.: Laboratory study of shear strength response of Chlef natural sand: effect of saturation. Mar. Georesour. Geotechnol. (2019). https://doi.org/10.1080/1064119X.2019.1595792

    Article  Google Scholar 

  30. Mitchell, J.K.: Fundamental of Soil Behaviour. Wiley, New York (1976)

    Google Scholar 

  31. Ni, Q., Tan, T.S., Dasari, G.R., Hight, D.W.: Contribution of fines to the compressive strength of mixed soils. Géotechnique 54(9), 561–569 (2004)

    Article  Google Scholar 

  32. Ni, Q., Tan, T.S., Dasari, G.R., Hight, D.W.: Discussion: contribution of fines to the compressive strength of mixed soils. Géotechnique 55(8), 627–628 (2005)

    Article  Google Scholar 

  33. Phan, V.T.A., Hsiao, D.H., Nguyen, P.T.L.: Effects of fines contents on engineering properties of sand-fines mixtures. Proc Eng 142, 213–220 (2016). https://doi.org/10.1016/j.proeng.2016.02.034

    Article  Google Scholar 

  34. Pitman, T.D., Robertson, P.K., Sego, D.C.: Influence of fines on the collapse of loose sands. Can. Geotech. J. 31(5), 728–739 (1994)

    Article  Google Scholar 

  35. Polito, C.P., Martin, J.R.: Effects of non-plastic fines on the liquefaction resistance of sands. J. Geotech. Geoenviron. Eng. 127(5), 408–415 (2001)

    Article  Google Scholar 

  36. Polito, C.P.: The effects of non-plastic and plastic fines on the liquefaction of sandy soils. PhD thesis in Civil Engineering, The Virginia Polytechnic Institute and State University, Blacksburg, USA (1999)

  37. Porcino, D.D., Diano, V., Triantafyllidis, T., Wichtmann, T.: Predicting undrained static response of sand with non-plastic fines in terms of equivalent granular state parameter. Acta Geotech. 15, 867–882 (2019)

    Article  Google Scholar 

  38. Porcino D.D., Tomasello G., Wichtmann T.: An insight into the prediction of limiting fines content for mixtures of sand with fines based on monotonic and cyclic tests. In: Silvestri and Moraci (Eds) Proc. of 7 Int. Conf. of Earthquake Geotechnical Engineering (ICEGE), Rome 17–20 June/Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions (2019)

  39. Rahman, M. M., Lo, S. R.: Equivalent granular void ratio and state parameters for loose clean sand with small amount of fines. In: 10th Australia New Zealand Conference on Geomechanics: Common Ground, Brisbane, Australia, pp. 674–679 (2007)

  40. Rahman, M.M., Lo, S.R.: On intergranular void ratio of loose sand with small amount of fines. In: 16th South East Asian Geotechnical Conference, Kuala Lumpur, Malaysia, pp. 255–260 (2007)

  41. Rahman, M.M., Lo, S.R.: Effect of sand gradation and fines type on the liquefaction behaviour of sand-fines mixtures. In: 4th decennial Geotechnical Earthquake Engineering and Soil Dynamics Conference, GSP-181, ASCE, Sacramento, California, USA (2008)

  42. Rahman, M.M., Lo, S.R., Gnanendran, C.T.: On equivalent granular void ratio and steady state behaviour of loose sand with fines. Can. Geotech. J. 45(10), 1439–1455 (2008)

    Article  Google Scholar 

  43. Rahman, M.M., Lo, S.R.: The prediction of equivalent granular steady state line of loose sand with fines. Geomech. Geoeng. 3(3), 179–190 (2008). https://doi.org/10.1080/17486020802206867

    Article  Google Scholar 

  44. Rahman, M.M., Lo, S.R., Cubrinovski, M.: Equivalent granular void ratio and behaviour of loose sand with fines. Recent Adv. Geotech. Earthquake Eng. Soil Dyn. 1–9 (2010)

  45. Thevanayagam, S.: Effect of fines and confining stress on undrained shear strength of silty sands. J. Geotech. Geoenviron. Eng. Div. ASCE 124(6), 479–491 (1998)

    Article  Google Scholar 

  46. Thevanayagam, S., Shenthan, T., Mohan, S., Liang, J.: Undrained fragility of clean sands, silty sands, and sandy silts. J. Geotech. Geoenviron. Eng. 128(10), 849–859 (2002)

    Article  Google Scholar 

  47. Thevanayagam, S., Fiorillo, M., Laing, L.: Effect of nonplastic fines on undrained cyclic strength of silty sands. In: ASCE Geotechnical Special Publication, pp 77–91 (2000)

  48. Thevanayagam, S., Mohan, S.: Intergranular state variables and stress–strain behaviour of silty sands. Geotechnique 50(1), 1–23 (2002)

    Article  Google Scholar 

  49. Thevanayagam, S., Martin, G.R.: Liquefaction in silty soils—screening and remediation issues. Soil Dyn. Earthq. Eng. 22(9–12), 1035–1042 (2002)

    Article  Google Scholar 

  50. Troncosco, J.H., Verdugo, R.: Silt content and dynamic behaviour of tailing sands. In: Proceeding 12th International Conference on Soil Mechanics and Foundations Engineering, San Francisco, USA, pp. 1311–1314 (1985)

  51. Unnikrishnan, N., Rajagopal, K., Krishnaswamy, N.R.: Behavior of reinforced clay under monotonic and cyclic loading. Geotext. Geomembr. 2002(20), 117–133 (2002)

    Article  Google Scholar 

  52. Vaid, Y.P.: Liquefaction of silty soils in ground failure under seismic conditions. In: Prakash, S., Dakoulas, P. (eds.) Geotech. Spl. publ. No. 44, pp. 1—16 (1994)

  53. Yamamuro, J.A., Lade, P.V.: Static liquefaction of very loose sands. Can. Geotech. J. 34, 905–917 (1997)

    Article  Google Scholar 

  54. Yamamuro, J.A., Lade, P.V.: Steady-state concepts and static liquefaction of silty sands. J. Geotech. Geoenviron. Eng. ASCE 124(9), 868–877 (1998)

    Article  Google Scholar 

  55. Yang, S.L., Lacasse, S., Sandven, R.F.: Determination of the transitional fines content of mixtures of sand and non-plastic fines. Geotech. Test. J. 29(2), 102–107 (2006)

    Google Scholar 

  56. Yilmaz, Y., Mollamahmutoglu, M.: Characterization of liquefaction susceptibility of sands by means of extreme void ratios and/or void ratio range. J. Geotech. Geoenviron. Eng. 135(12), 1986–1990 (2009)

    Article  Google Scholar 

  57. Zlatovic, S., Ishihara, K.: On the influence of non-plastic fines on residual strength. In: Proceedings of the First International Conference on Earthquake Geotechnical Engineering. Tokyo, pp. 14–16 (1995)

  58. Zlatovic, S., Ishihara, K.: Normalized behaviour of very loose non-plastic soils: effects of fabric. Soils Found. 37(4), 47–56 (1997)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the reviewers for their constructive and detailed comments. Tests were performed in the Laboratory of Material Sciences and Environment (LsmE) at UHBC University of Chlef. The present study was financially supported by the General Directorate for Scientific Research and Technological Development (DGRSDT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Benessalah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benessalah, I., Arab, A. & Meziane, EH. Intergranular void ratio and undrained monotonic behavior of Chlef sand containing low plastic fines. Acta Mech 232, 1621–1640 (2021). https://doi.org/10.1007/s00707-020-02923-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02923-0

Navigation