Skip to main content
Log in

Critical dynamics of damage-failure transition in wide range of load intensity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The self-similarity of characteristic stages of damage-failure transition has been studied both theoretically and experimentally, with the damage localization kinetics analyzed according to the nonlinearity of free energy release of solids with defects: Free energy in the generalized Ginzburg–Landau form reflecting the specific criticality of solids with defects, and the structural-scaling transition in the presence of two critical points separating qualitatively different material responses corresponds to the types of collective modes of defects. These collective modes have the nature of the self-similar solutions of the damage evolution equation. The final damage stage is associated with the singular self-similar blow-up solutions localized on a set of spatial scales. The presence of two singularities (the stress field at the crack tip and the blow-up damage modes) allows the interpretation of self-similarity of damage localization kinetics to be construed as a criticality sign of damage-failure transition and has been illustrated by the original experimental statements: transition from the steady state to branching crack dynamics, dynamic fragmentation statistics, resonance regimes of failure in shocked materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Barenblatt, G.I.: Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge Univ. Press, Cambridge (1996)

    Book  Google Scholar 

  2. Naimark, O.B.: Defect induced transitions as mechanisms of plasticity and failure in multifield continua. In: Capriz, G., Mariano, P. (eds.) Advances in Multifield Theories Of Continua With Substructure, pp. 75–114. Birkhäuser, Boston (2004). https://doi.org/10.1007/978-0-8176-8158-6_4

    Chapter  Google Scholar 

  3. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond., Ser. A (1921). https://doi.org/10.1098/rsta.1921.0006

    Article  MATH  Google Scholar 

  4. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  5. Fraenkel, Y.I.: Theory of reversible and non-reversible cracks in solid. J. Techn. Phys. 22, 1857–1866 (1952)

    Google Scholar 

  6. Naimark, O.B.: Collective properties of defects ensemble and some nonlinear problems of plasticity and fracture. Phys. Mesomech. 6(4), 39–63 (2003)

    Google Scholar 

  7. Leontovich, M.A.: Introduction into Thermodynamics. Statistical Physics. Nauka, Moskow (1983)

    Google Scholar 

  8. Rundle, J.B., Turcotte, D.L., Shcherbakov, R., Klein, W., Sammis, C.: Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev. Geophys. (2003). https://doi.org/10.1029/2003RG000135

    Article  Google Scholar 

  9. Barenblatt, G.I., Botvina, L.R.: Self-similarity of fatigue failure. Damage accumulation. Izv. Akad. Nauk SSSR. MTT 4, 161–165 (1983)

    Google Scholar 

  10. Naimark, O.B., Silbershmidt, V.V.: On the fracture of solids with microcracks. Eur. J. Mech. A/Solids. 10, 607–619 (1991)

    MATH  Google Scholar 

  11. Froustey, C., Naimark, O., Bannikov, M., Oborin, V.: Microstructure scaling properties and fatigue resistance of pre-strained aluminium alloys (part 1: AlCu alloy). Eur. J. Mech. A/Solids (2010). https://doi.org/10.1016/j.euromechsol.2010.07.005

    Article  Google Scholar 

  12. Naimark, O.B.: Structural-scale transitions in solids with defects and symmetry aspects of field theory. Phys. Mesomech. (2010). https://doi.org/10.1016/j.physme.2010.11.011

    Article  Google Scholar 

  13. Naimark, O.B.: Structural-scaling transition in mesodefect ensembles as mechanism of relaxation and failure in shocked and dynamically loaded materials (experimental and theoretical study). J. Phys. IV (2006). https://doi.org/10.1051/jp4:2006134002

    Article  Google Scholar 

  14. Plekhov, O., Naimark, O., Paggi, M., Carpinteri, A.A.: Dimensional analysis interpretation to grain size and loading frequency dependencies of the Paris and Wehler curves. Int. J. Fatigue (2011). https://doi.org/10.1016/j.ijfatigue.2010.10.001

    Article  Google Scholar 

  15. Naimark, O.B., Bayandin, YuV, Leontiev, V.A., Panteleev, I.A., Plekhov, O.A.: Structural-scaling transitions and thermodynamic and kinetics effects in submicro-(nano-)crystalline bulk materials. Phys. Mesomech. (2009). https://doi.org/10.1016/j.physme.2009.12.005

    Article  Google Scholar 

  16. Froustey, C., Naimark, O.B., Panteleev, I.A., Bilalov, D.A., Petrova, A.N., Lyapunova, E.A.: Multiscale structural relaxation and adiabatic shear failure mechanisms. Phys. Mesomech. (2017). https://doi.org/10.1134/S1029959917010039

    Article  Google Scholar 

  17. Naimark, O.B., Bayandin, YuV, Zocher, M.A.: Collective properties o defects, multiscale plasticity and shock induced phenomena in solids. Phys. Mesomech. (2017). https://doi.org/10.1134/S1029959917010027

    Article  Google Scholar 

  18. Kurdyumov, S.P.: Evolution and self-organization laws of complex systems. Int. J. Modern Phys. (1988). https://doi.org/10.1142/S0129183190000177

    Article  MATH  Google Scholar 

  19. Naimark, O.B.: Collective behavior of cracks and defects (plenary lecture). In: Miannay, D., Costa, P., Francois, D., Pineau, A. (eds.) Advances in Mechanical Behavior, Plasticity and Damage, pp. 15–28. Elsevier, Amsterdam (2000)

    Google Scholar 

  20. Naimark, O.B., Uvarov, S.V.: Nonlinear crack dynamics and scaling aspects of fracture (experimental and theoretical study). Int. J. Fract. (2004). https://doi.org/10.1023/B:FRAC.0000040992.50470.8a

    Article  MATH  Google Scholar 

  21. Naimark, O.: Duality of singularities of multiscale damage localization and crack advance: length variety in theory of critical distances. Frattura ed Integrità Strutturale (2019). https://doi.org/10.3221/IGF-ESIS.49.27

    Article  Google Scholar 

  22. Skripov, V.P.: Metastable Liquids. Wiley, New York (1973)

    Google Scholar 

  23. Skripov, V.P.: Metastable phases as relaxing systems. In: Smoliak, B,M. (ed.) Thermodynamics of Metastable Systems. USSR Russian Academy of Sciences (Ural Division), Sverdlovsk, pp. 3–17 (1989)

  24. Bayandin, Yu., Saveleva, N., Naimark, O.: Metastability and defects-induced criticality in shocked materials. Interfacial Phenom. Heat Transf. (2017). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2018025466

    Article  Google Scholar 

  25. Naimark, O.B.: Energy release rate and criticality of multiscale defects kinetics. Int. J. Fract. (2016). https://doi.org/10.1007/s10704-016-0161-3

    Article  Google Scholar 

  26. Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture: II. Microstructural aspects. Int. J. Fract. (1982). https://doi.org/10.1007/BF01152313

    Article  Google Scholar 

  27. Fineberg, J., Gross, S., Marder, M., Swinney, H.: Instability in dynamic fracture. Phys. Rev. Lett. (1991). https://doi.org/10.1016/S0370-1573(98)00085-4

    Article  Google Scholar 

  28. Sharon, E., Gross, S.P., Fineberg, J.: Local branching as a mechanism in dynamic fracture. Phys. Rev. Lett. 74, 5096–5099 (1995)

    Article  Google Scholar 

  29. Boudet, J.F., Ciliberto, S., Steinberg, V.: Dynamics of crack propagation in brittle materials. J. Phys. 6, 1493–1516 (1993)

    Google Scholar 

  30. Sharon, E., Gross, S.P., Fineberg, F.: Energy dissipation in dynamic fracture. Phys. Rev. Lett. (1996). https://doi.org/10.1103/PhysRevLett.76.2117

    Article  Google Scholar 

  31. Naimark, O.B., Davydova, M.M., Plekhov, O.A., Uvarov, S.V.: Experimental and theoretical studies of dynamic stochasticity and scaling during crack propagation. Phys. Mesomech. 3, 43–53 (1999)

    Google Scholar 

  32. Naimark, O.B., Davydova, M.M., Plekhov, O.A.: Nonlinear and structural aspects of transitions from damage to fracture in composites and structures. Comput. Struct. (2000). https://doi.org/10.1016/S0045-7949(99)00175-3

    Article  Google Scholar 

  33. Belyaev, V.V., Naimark, O.B.: Localized blow-up structures in failure of solid under intensive loading. Sov. Phys. Dokl. 312, 289–293 (1990)

    Google Scholar 

  34. Bellendir, E.N., Belyaev, V.V., Naimark, O.B.: Kinetics of multicenter failure in spall conditions. Sov. Tech. Phys. Lett. 15, 90–93 (1989)

    Google Scholar 

  35. Astrom, J.A., Linna, R.P., Timonen, J., Moller, P.F., Oddershede, L.: Exponential and power-law mass distributions in brittle fragmentation. Phys. Rev. (2004). https://doi.org/10.1103/PhysRevE.70.026104

    Article  Google Scholar 

  36. Katsuragi, H., Sugino, D., Honjo, H.: Scaling of impact fragmentation near the critical point. Phys. Rev. (2003). https://doi.org/10.1103/PhysRevE.68.046105

    Article  Google Scholar 

  37. Grady, D.E.: Length scales and size distributions in dynamic fragmentation. Int. J. Fract. (2010). https://doi.org/10.1007/s10704-009-9418-4

    Article  MATH  Google Scholar 

  38. Davydova, M.M., Uvarov, S.V., Naimark, O.B.: Scale invariance in dynamic fragmentation of quartz. Phys. Mesomech. (2014). https://doi.org/10.1134/S1029959914010093

    Article  Google Scholar 

  39. Davydova, M.M., Uvarov, S.V., Naimark, O.B.: Space-time scale invariance in dynamically fragmented quasi-brittle materials. Phys. Mesomech. (2016). https://doi.org/10.1134/S1029959916010094

    Article  Google Scholar 

  40. Bannikova, I.A., Naimark, O.B., Uvarov, S.V.: Transition from multi-center fracture to fragmentation statistics under intensive loading. Proc. Struct. Integrity (2016). https://doi.org/10.1016/j.prostr.2016.06.244

    Article  Google Scholar 

  41. Naimark, O.B.: Some regularities of scaling in plasticity. Fail. Turbul. Phys. Mesomech. (2016). https://doi.org/10.1134/S1029959916030097

    Article  Google Scholar 

  42. Rasorenov, S.V., Kanel, G.I., Fortov, V.E., Abasenov, M.M.: The fracture of glass under high-pressure impulsive loading. High Pressure Res. (1991). https://doi.org/10.1080/08957959108202508

    Article  Google Scholar 

  43. Bourne, N., Rosenberg, Z., Field, J.E.: High speed photography of compressive failure waves in glasses. J. Appl. Phys. (1995). https://doi.org/10.1063/1.360709

    Article  Google Scholar 

  44. Plekhov, O.A., Eremeev, D.N., Naimark, O.B.: Failure wave as resonance excitation of collective burst modes of defects in shocked brittle materials. J. Phys. IV France (2000). https://doi.org/10.1051/jp4:20009134

    Article  Google Scholar 

  45. Naimark, O., Uvarov, S., Radford, D., Proud, W., Field, J., Church, P., Cullis, I., Andrews, T.: The failure front in silica glasses. In: Delpuech, A. (ed.) Behavior of Dense Media under High Dynamic Pressures, pp. 65–74. Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Acknowledgement

The research was conducted according to the Government Contract no. AAAA-A19-119013090021-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Saveleva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naimark, O., Bayandin, Y., Uvarov, S. et al. Critical dynamics of damage-failure transition in wide range of load intensity. Acta Mech 232, 1943–1959 (2021). https://doi.org/10.1007/s00707-020-02922-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02922-1

Navigation