Skip to main content

Heat dissipation and acoustic emission features of titanium alloys in cyclic deformation mode

Abstract

The present work unveils the features of heat dissipation and acoustic emission accompanying the fatigue crack growth in a titanium alloy (Ti-0.8Al-0.8Mn and Ti Grade 2) using the compact tension and Charpy V-notch specimens. The quantitative measurements of the heat dissipation rate were carried out by an original heat flux sensor. The obtained results reveal that there exist two appreciably different stages of the crack propagation within the stable Paris regime. Relationships between the crack growth rate and the heat dissipation rate are proposed for both stages. The application of the non-supervised clustering algorithm to the continuously recorded acoustic emission signal helped to identify two dominant mechanisms of stress relaxation that occur ahead of the crack tip—mechanical twinning and crack opening. The correlation between the acoustic emission energy and heat dissipation was found to be a harbinger of the approaching transition from stable to unstable crack growth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Iino, Y.: Fatigue crack propagation work coefficient – a material constant giving degree of resistance to fatigue crack growth. Eng. Fract. Mech. 12(2), 279–299 (1979). https://doi.org/10.1016/0013-7944(79)90120-6

    Article  Google Scholar 

  2. 2.

    Chow, C.L., Lu, T.J.: Cyclic J-integral in relation to fatigue crack initiation and propagation. Eng. Fract. Mech. 39(1), 1–20 (1991). https://doi.org/10.1016/0013-7944(91)90018-V

    Article  Google Scholar 

  3. 3.

    Dowling, N.E., Begley, J.A.: Mechanics of Crack Growth. ASTM STP 590, pp. 83–104. American Society for Testing and Materials, Philadelphia (1976)

    Google Scholar 

  4. 4.

    Carpinteri, A., Montagnoli, F.: Scaling and fractality in subcritical fatigue crack growth: crack-size effects on Paris’ law and fatigue threshold. FFEMS. 43(4), 788–801 (2020). https://doi.org/10.1111/ffe.13184

    Article  Google Scholar 

  5. 5.

    Lindley, T.C., McCartney, L.N.: Mechanics and Mechanisms of Fatigue Crack Growth. Developments in Fracture Mechanics. Applied Science Publishers, London (1981)

    Google Scholar 

  6. 6.

    Izumi, Y., Fine, M.E., Mura, T.: Energy considerations in fatigue crack propagation. Int. J. Fract. 17, 15–25 (1981). https://doi.org/10.1007/BF00043118

    Article  Google Scholar 

  7. 7.

    Chakrabarti, A.K.: En energy-balance approach to the problem of fatigue-crack growth. Eng. Fract. Mech. 10, 469–483 (1978). https://doi.org/10.1016/0013-7944(78)90058-9

    Article  Google Scholar 

  8. 8.

    Christensen, R.M., Wu, E.M.: A theory of crack growth in viscoelastic materials. Eng. Fract. Mech. 14, 215–225 (1981). https://doi.org/10.1016/0013-7944(81)90029-1

    Article  Google Scholar 

  9. 9.

    Bodner, S.R., Davidson, D.L., Lankford, J.: A description of fatigue crack growth in terms of plastic work. Eng. Fract. Mech. 17, 189–191 (1983). https://doi.org/10.1016/0013-7944(83)90169-8

    Article  Google Scholar 

  10. 10.

    Short, J.S., Hoeppner, D.W.: A global/local theory of fatigue crack propagation. Eng. Fract. Mech. 33(2), 175–184 (1989). https://doi.org/10.1016/0013-7944(89)90022-2

    Article  Google Scholar 

  11. 11.

    Memhard, D., Brocks, W., Frick, S.: Characterisation of ductile tearing resistance by energy dissipation rate. Fatigue Fract. Eng. Mater Struct. 16(10), 1109–1124 (1993). https://doi.org/10.1111/j.1460-2695.1993.tb00081.x

    Article  Google Scholar 

  12. 12.

    Turner, C.E., Koledni, O.: Application of energy dissipation rate arguments to stable crack growth. Fatigue Fract. Eng. Mater. Struct. 17(10), 1109–1127 (1994). https://doi.org/10.1111/j.1460-2695.1994.tb01402.x

    Article  Google Scholar 

  13. 13.

    Chudnovsky, A., Moet, A.: Thermodynamics of translational crack layer propagation. J. Mater. Sci. 20, 630–635 (1985). https://doi.org/10.1007/BF01026535

    Article  Google Scholar 

  14. 14.

    Strüwe, A., Pippan, R.: On the energy balance of fatigue crack growth. Comput. Struct. 44(1–2), 13–17 (1992). https://doi.org/10.1016/0045-7949(92)90218-O

    Article  Google Scholar 

  15. 15.

    Ivanova, V.S., Terentiev, V.F.: The Nature of the Fatigue of Metals. Metallurgy, Moscow (1975)

    Google Scholar 

  16. 16.

    Troshchenko, V.T.: Deformation and Fracture of Metals Under High Cyclic Loading. Naukova Dumka, Kiev (1981)

    Google Scholar 

  17. 17.

    Fedorov, V.V.: Thermodynamic Aspects of Strength and Fracture of Solids. FAN Uz SSR, Tashkent (1979)

    Google Scholar 

  18. 18.

    Vshivkov, A.N., Iziumova, AYu., Panteleev, I.A., Ilinykh, A.V., Wildemann, V.E., Plekhov, O.A.: The study of a fatigue crack propagation in titanium grade 2 using analysis of energy dissipation and acoustic emission data. Eng. Fract. Mech. 210, 312–319 (2019). https://doi.org/10.1016/J.ENGFRACMECH.2018.05.012

    Article  Google Scholar 

  19. 19.

    Pascoe, J.A., Zarouchas, D.S., Alderliesten, R.C., Benedictus, R.: Using acoustic emission to understand fatigue crack growth within a single load cycle. Eng. Fract. Mech. 194, 281–300 (2018). https://doi.org/10.1016/j.engfracmech.2018.03.012

    Article  Google Scholar 

  20. 20.

    Chai, M., Zhang, J., Zhang, Z., Duan, Q., Cheng, G.: Acoustic emission studies for characterisation of fatigue crack growth in 316LN stainless steel and welds. Appl. Acoust. 126, 101–113 (2017). https://doi.org/10.1016/j.apacoust.2017.05.014

    Article  Google Scholar 

  21. 21.

    Botvina, L.R., Soldatenkov, A.P., Tyutin, M.R., Demina, YuA, Levin, V.P., Petersen, T.B.: On interrelation of damage accumulation in structural steels and physical parameters estimated by methods of acoustic emission and metal magnetic memory. Russ. Metall. 2017, 10–17 (2017). https://doi.org/10.1134/S0036029517010037

    Article  Google Scholar 

  22. 22.

    Botvina, L.R., Oparina, I.B., Shebalin, P.N.: A mechanism of temporal variation of seismicity and acoustic emission prior to macrofailure. Dokl. Phys. 46(2), 119–123 (2001). https://doi.org/10.1134/1.1355388

    Article  Google Scholar 

  23. 23.

    Botvina, L.R., Soldatenkov, A.P., Levin, V.P., Tyutin, M.R., Demina, Y.A., Petersen, T.B., Dubov, A.A., Semashko, N.A.: Assessment of mild steel damage characteristics by physical methods. Russ. Metall. 2016(1), 23–33 (2016). https://doi.org/10.1134/S0036029516010067

    Article  Google Scholar 

  24. 24.

    Carpinteri, A., Lacidogna, G., Corrado, M., Di Battista, E.: Cracking and crackling in concrete-like materials: a dynamic energy balance. Eng. Fract. Mech. 155, 130–144 (2016). https://doi.org/10.1016/j.engfracmech.2016.01.013

    Article  Google Scholar 

  25. 25.

    Sato, Y., Kawaguchi, N., Ogura, N., Kitayama, T.: Automated visualisation of surface morphology of cracks by means of induced current potential drop technique. NDT&E Int. 49, 83–89 (2012). https://doi.org/10.1016/j.ndteint.2012.04.005

    Article  Google Scholar 

  26. 26.

    Nayeb-Hashemi, H., Swet, D., Vaziri, A.: New electrical potential method for measuring crack growth in nonconductive materials. Measurement 36, 121–129 (2004). https://doi.org/10.1016/j.measurement.2004.05.002

    Article  Google Scholar 

  27. 27.

    Hartman, G.A., Johnson, D.A.: D-C electric-potential method applied to thermal/mechanical fatigue crack growth. Exp. Mech. 27, 106–112 (1987). https://doi.org/10.1007/BF02318872

    Article  Google Scholar 

  28. 28.

    Vshivkov, A., Iziumova, A., Bär, U., Plekhov, O.: Experimental study of heat dissipation at the crack tip during fatigue crack propagation. Frattura ed Integrità Strutturale. 35, 131–137 (2016). https://doi.org/10.3221/IGF-ESIS.35.07

    Article  Google Scholar 

  29. 29.

    Pomponi, E., Vinogradov, A.: A real-time approach to acoustic emission clustering. Mech. Syst. Signal Process. 2, 791–804 (2013). https://doi.org/10.1016/j.ymssp.2013.03.017

    Article  Google Scholar 

  30. 30.

    Ranganathan, N., Chalon, F., Meo, S.: Some aspects of the energy based approach to fatigue crack propagation. Int. J. Fatigue 30, 1921–1929 (2008). https://doi.org/10.1016/j.ijfatigue.2008.01.010

    Article  Google Scholar 

  31. 31.

    Vinogradov, A., Vasilev, E., Linderov, M., Merson, D.: In situ observations of the kinetics of twinning–detwinning and dislocation slip in magnesium. Mater. Sci. Eng. A 676, 351–360 (2016). https://doi.org/10.1016/j.msea.2016.09.004

    Article  Google Scholar 

  32. 32.

    Danyuk, A., Rastegaev, I., Pomponi, E., Linderov, M., Merson, D., Vinogradov, A.: Improving of acoustic emission signal detection for fatigue fracture monitoring. Procedia Eng. 176, 284–290 (2017). https://doi.org/10.1016/j.proeng.2017.02.323

    Article  Google Scholar 

  33. 33.

    Vinogradov, A., Yasnikov, I.S.: On the nature of acoustic emission and internal friction during cyclic deformation of metals. Acta Mater. 70, 8–18 (2014). https://doi.org/10.1016/j.actamat.2014.02.007

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, project number 20-31-70018.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Iziumova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iziumova, A.Y., Vshivkov, A.N., Prokhorov, A.E. et al. Heat dissipation and acoustic emission features of titanium alloys in cyclic deformation mode. Acta Mech 232, 1853–1861 (2021). https://doi.org/10.1007/s00707-020-02911-4

Download citation