Skip to main content
Log in

Exact solutions for stochastic Bernoulli–Euler beams under deterministic loading

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study deals with two general solutions for a simply supported linear elastic Bernoulli–Euler beam with a stochastic bending flexibility, subjected to a deterministic loading. Two model problems are considered. The first problem is associated with a trapezoidally distributed load, whereas the second problem treats a sinusoidally distributed load. The importance of the solution for the trapezoidal load lies in its practicality. The derivation of stochastic characteristics for random beams under a sinusoidal load is useful due to the expandability to generally distributed loads by a Fourier sine series expansion. Numerical results are reported for various cases illustrating the effect of stochasticity of the beam’s properties on its flexural response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Berg, C., Mateu, J., Porcu, E.: The Dagum family of isotropic correlation functions. Bernoulli 14(4), 1134–1149 (2008)

    Article  MathSciNet  Google Scholar 

  2. Elishakoff, I., Impollonia, N., Ren, Y.J.: New exact solutions for randomly loaded beams with stochastic flexibility. Int. J. Solids Struct. 36(16), 2325–2340 (1999)

    Article  MathSciNet  Google Scholar 

  3. Elishakoff, I., Ren, Y.J.: Finite Element Methods for Structures with Large Stochastic Variations. Oxford University Press, New York (2003)

    MATH  Google Scholar 

  4. Elishakoff, I., Ren, Y.J., Shinozuka, M.: Some exact solutions for the bending of beams with spatially stochastic stiffness. Int. J. Solids Struct. 32, 2315–2327 (1995) (Corrigendum: 33, p. 3491, 1996)

  5. Gneiting, T., Schlacher, M.: Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46, 269–282 (2004)

    Article  MathSciNet  Google Scholar 

  6. Impollonia, N., Elishakoff, I.: Exact and approximate solutions, and variational principles for stochastic shear beams under deterministic loading. Int. J. Solids Struct. 35(24), 3151–3164 (1998)

    Article  Google Scholar 

  7. Impollonia, N., Elishakoff, I.: Behavior of stochastic shear beams under random loading via stochastic variational principles. Chaos, Solitons, Fractals 9, 1983–1996 (1998)

    Article  MathSciNet  Google Scholar 

  8. Lim, S.C., Teo, L.P.: Analytic and asymptotic properties of multivariate generalized Linnik’s probability densities. J. Fourier Anal. Appl. 16, 715–747 (2010)

    Article  MathSciNet  Google Scholar 

  9. Matérn, B.: Spatial Variation. Number 36 in Lecture Notes in Statistics. Springer Verlag, New York (1986)

    Book  Google Scholar 

  10. Porcu, E., Mateu, J., Zim, A., Pini, R.: Modelling spatio-temporal data: a new variogram and covariance structure proposal. Stat. Prob. Lett. 77(1), 83–89 (2007)

    Article  MathSciNet  Google Scholar 

  11. Rzhanitsyn, A.R.: Probabilistic calculation of beams on a random load. In: Korenev, B.G., Rabinovich, I.M. (eds.) Investigation in the Theory of Structures, vol. 23, pp. 158–171. “Stroizzdat” Publishing House, Moscow (1977). (in Russian)

    Google Scholar 

  12. Shen, L., Ostoja-Starzewski, M., Porcu, E.: Bernoulli–Euler beams with random properties under random field loads: fractal and Hurst effects. Arch. Appl. Mech. 84, 1595–1626 (2014)

    Article  Google Scholar 

  13. Shen, L., Ostoja-Starzewski, M., Porcu, E.: Elastic rods and shear beams with random field properties under random field loads: fractal and Hurst effects. J. Eng. Mech. 141(7), 04015002 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Oded Rabinovitch gratefully acknowledges the support of the Abel Wolman Chair in Civil Engineering. The work was initiated when Isaac Elishakoff served as a Visiting Distinguished Professor at the Technion—I.I.T., at the auspices of the Edmond Safra Foundation. We express our sincere gratitude to the above organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nachman Malkiel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 : Expressions for exact solutions

Appendix 1 : Expressions for exact solutions

B1 Solution for the deflection’s covariance function, where an exponential form is used for the flexibility covariance function \(\text{cov}_{f}\), and the load is a general trapezoidal function:

$$\begin{aligned} \text{cov}_{w} (\xi ,\eta ) & = \frac{{L^{8} a^{2} q_{0}^{2} }}{{18\alpha^{10} }} \cdot \\ & \left\{ {\left( {\left( {3 + (\eta + 1)\beta } \right)\eta (\eta - 1)\alpha^{3} + ( - 6\beta \eta^{2} + 2\beta - 12\eta + 6)\alpha^{2} + 18(\beta \eta + 1)\alpha - 24\beta } \right)} \right. \\ & \left( {\left( {3 + (\xi + 1)\beta } \right)(\xi - 1)\xi \alpha^{3} + \left( {6\beta \xi^{2} - 2\beta + 12\xi - 6} \right)\alpha^{2} + 18(\beta \xi + 1)\alpha + 24\beta } \right)e^{\alpha (\eta - \xi )} /2 \\ & \quad - \;2\left( {\left( {3 + (\eta + 1)\beta } \right)\eta (\eta - 1)\alpha^{3} + ( - 6\beta \eta^{2} + 2\beta - 12\eta + 6)\alpha^{2}}\right. \\ & \quad \left.{+ 18(\beta \eta + 1)\alpha - 24\beta } \right)\left( {(\beta + 3/2)\alpha^{2} + 9/2(\beta + 1)\alpha + 6\beta } \right)\xi e^{\alpha (\eta - 1)} \\ & \quad - \;\left( {(2\beta + 3)\alpha^{2} + 9(\beta + 1)\alpha + 12\beta } \right)\eta \left( {\left( {3 + (\xi + 1)\beta } \right)(\xi - 1)\xi \alpha^{3}}\right.\\ & \quad \left.{+ ( - 6\beta \xi^{2} + 2\beta - 12\xi + 6)\alpha^{2} + (18\beta \xi + 18)\alpha - 24\beta } \right)e^{\alpha (\xi - 1)} \\ & \quad + \;\left( {\left( {3 + (\eta + 1)\beta } \right)\eta (\eta - 1)\alpha^{3} + (6\beta \eta^{2} - 2\beta + 12\eta - 6)\alpha^{2}}\right. \\ & \quad\left.{ + 18(\beta \eta + 1)\alpha + 24\beta } \right)(\xi - 1)\left( {(\beta + 3)\alpha^{2} + 9\alpha - 12\beta } \right)e^{ - \alpha \eta } \\ & \quad + \;\left( {\left( {3 + (\xi + 1)\beta } \right)(\xi - 1)\xi \alpha^{3} + (6\beta \xi^{2} - 2\beta + 12\xi - 6)\alpha^{2}}\right. \\ & \quad \left.{+ (18\beta \xi + 18)\alpha + 24\beta } \right)(\eta - 1)\left( {(\beta + 3)\alpha^{2} + 9\alpha - 12\beta } \right)e^{ - \alpha \xi } \\ & \quad - \;2\left( {(2\beta + 3)\alpha^{2} + 9(\beta + 1)\alpha + 12\beta } \right)\left( {(2\xi - 1)\eta - \xi } \right)\left( {(\beta + 3)\alpha^{2} + 9\alpha - 12\beta } \right)e^{ - \alpha } \\ & \quad + \;\eta (\xi - 1)/72\left\{ {\left( {\eta^{8} - 24\eta^{6} /7 + 18\eta^{4} /5 + \xi \left( - 46/35 - 2\xi^{6} /7 + 38\xi^{4} /35 - 26\xi^{5} /7\right.}\right.}\right.\\ &\left.{ \left.{\left.\quad + 164\xi^{3} /35 + \xi^{7} - 46\xi^{2} /35 - 46/35\xi\right)} \right)} \right.\beta^{2} \\ & \quad + \;\left( {54\eta^{7} /7 - 72\eta^{6} /7 - 72\eta^{5} /5 + 108\eta^{4} /5 + (54/7)\left(\xi^{6} - 5\xi^{5} /3 - 5\xi^{4} /3 + 59\xi^{3} /15 \right.}\right.\\ & \quad \left.{\left.- 11\xi^{2} /15 - 11\xi /15 - 11/15\right)\xi } \right)\beta \\ & \quad \left. { + \;108\eta^{6} /7 - 216\eta^{5} /5 + 162\eta^{4} /5 + (108/35)\left( {5\xi^{5} - 16\xi^{4} + 31\xi^{3} /2 - 2\xi^{2} - 2\xi - 2} \right)\xi } \right\}\alpha^{9} \\ & 2/7\left\{ {\left( {\eta^{6} - 49/20\eta^{4} + 7/6\eta^{2} + \xi (23/30 + 3\xi^{4} /10 + \xi^{5} - 43\xi^{3} /20 - 2\xi^{2} /5 + 23\xi /30)} \right)} \right.\beta^{2} \\ & \quad + \;\left( {63\eta^{5} /10 - 147\eta^{4} /20 + 7\eta^{2} - 21\xi^{4} /4 + 63\xi^{5} /10 - 7\eta^{3} + 7\xi /2 - 7\xi^{3} + 7\xi^{2} /2} \right)\beta \\ & \quad \left. { + \;189\eta^{4} /20 + 189\xi^{4} /20 + 21\xi /5 + 21\eta^{2} /2 - 21\eta^{3} - 84\xi^{3} /5 + 21\xi^{2} /5} \right\}\eta (\xi - 1)\alpha^{7} \\ & \quad + \;(6/5)\eta (\xi - 1)\left( { - 15 + (\xi^{4} + \eta^{4} + \xi^{3} - 7\xi^{2} /3 - 10\eta^{2} /3 - 7\xi /3 - 5/3)\beta^{2}}\right. \\ & \quad \left.{+ (5\eta^{3} + 5\xi^{3} - 10\eta^{2} - 5\xi^{2} - 5\xi - 10)\beta } \right)\alpha^{5} \\ & \quad + \;2\left( {\left( {( - 5\xi + 1)\eta + \xi - 1} \right)\beta^{2} + 6\left( {( - 3\xi + 1)\eta + \xi - 1} \right)\beta + 9\left( {( - 2\xi + 1)\eta + \xi - 1} \right)} \right)\alpha^{4} \\ & \quad + \;36\eta (\beta^{2} + 3\beta + 3)(\xi - 1)\alpha^{3} + \left( {\left( {(114\xi - 48)\eta - 48\xi + 48} \right)\beta^{2} + \left( {(324\xi - 144)\eta}\right.}\right.\\ & \quad - \left.{\left.{144\xi + 144} \right)\beta + (324\xi - 162)\eta - 162\xi + 162} \right)\alpha^{2} \\ & \quad \left. { - \;144\beta^{2} \eta (\xi - 1)\alpha - 576\beta^{2} \left( {(\xi - 1/2)\eta - \xi /2 + 1/2} \right)} \right\}\quad {\text{for}}\; \, \xi > \eta \,. \\ \end{aligned}$$
(44)

B2 Solution for the deflection’s covariance function, where a Matérn form is used for the flexibility covariance function \(\text{cov}_{f}\), and the load is a general trapezoidal function:

$$\begin{aligned} \text{cov}_{w} (\xi ,\eta ) & = \frac{{23a^{2} q_{o}^{2} L^{8} }}{18} \cdot \{ \\ & \left[ { - (\beta /46)\left( {(\xi^{3} + 6\xi^{2} + 17\xi + 22)\beta + 3\xi^{2} + 9\xi + 12} \right)\eta^{4} } \right. \\ & + \left\{ {(\xi + 3)(\xi^{3} + 14\xi^{2} + 47\xi + 104)\beta^{2} /46 }\right.\\ & \quad \left.{+ (12\xi^{2} + 48 + 36\xi )\beta /23 - 18/23 - 9\xi^{2} /46 - 27\xi /46} \right\}\eta^{3} \\ & +\left\{\; {( - 1249\xi /46 - 3\xi^{4} /23 - 89\xi^{3} /46 - 228\xi^{2} /23 - 793/23)\beta^{2} } \right. \\ & \qquad +(3/46)(\xi + 1)(\xi^{3} + 9\xi^{2} + 3\xi + 18)\beta \\ & \qquad \qquad +\left. { 225/23 + 9\xi^{3} /46 + 117\xi^{2} /46 + 171\xi /23} \right\}\eta^{2} \\ & +\left\{ {(17\xi^{4} /46 + 245\xi^{3} /46 + 1249\xi^{2} /46 + 2168/23 + 3417\xi /46)\beta^{2} } \right. \\ & \qquad \left. { + ( - 15\xi^{4} /46 - 75\xi^{3} /23 - 429\xi^{2} /46 - 633/23 - 531\xi /23)\beta}\right. \\ & \qquad \qquad \left.{- 45\xi^{3} /46 - 234\xi^{2} /23 - 1359\xi /46 - 891/23} \right\}\eta \\ & +( - 11\xi^{4} - 156\xi^{3} - 793\xi^{2} - 2168\xi - 2750)\beta^{2} /23 \\ & + \left({12\xi^{4} + 120\xi^{3}393\xi^{2} + 999\xi + 1212}\right)\beta /23 \\ & +\left. { 351\xi^{2} /23 + 36\xi^{3} /23 + 1017\xi /23 + 1332/23} \right]e^{\eta - \xi } \\ &\!\! - ((\xi - 1)/23)\left[ {(11\beta^{2} - 12\beta )\eta^{4} } \right.+ 156(\beta - 1)(\beta + 3/13)\eta^{3} \\ &\qquad + (793\beta^{2} - 393\beta - 351)\eta^{2}+ \;(2168\beta^{2} - 999\beta - 1017)\eta \\ & \qquad \qquad \qquad \qquad \left. { + 2750\beta^{2} - 1212\beta - 1332} \right]e^{ - \eta } \\ & \!\! - ((\eta - 1)/23)\left[ {(11\xi^{4} + 156\xi^{3} + 793\xi^{2} + 2168\xi + 2750)\beta^{2}}\right.\\ & \qquad+ \left( - 12\xi^{4} - 120\xi^{3} - 393\xi^{2} - 999\xi - 1212\right)\beta \\ & \qquad \qquad \qquad \qquad \left. { - 36\xi^{3} - 351\xi^{2} - 1017\xi - 1332} \right]e^{ - \xi } \\ & \!\! +\left[ {(\beta^{2} + 12\beta /23)\eta^{4}} \right. + (36 - 332\beta^{2} - 96\beta )\eta^{3} /23 \\ & \quad + ( - 459 + 1693\beta^{2} - 93\beta )\eta^{2} /23 + (1827 - 4632\beta^{2} \\ & \quad + 1461\beta )\eta /23 - 2736/23 +\left. { 5878\beta^{2} /23 - 2736\beta /23} \right]\xi e^{\eta - 1} \\ & \!\! + \eta \left[ {(5878 + 23\xi^{4} - 332\xi^{3} + 1693\xi^{2} - 4632\xi )\beta^{2} /23} \right.\\ & \quad + ( - 2736 + 12\xi^{4} - 96\xi^{3} - 93\xi^{2} + 1461\xi )\beta /23 \\ & \quad - 2736/23 - 459\xi^{2} /23 + 1827\xi /23 +\left. { 36\xi^{3} /23} \right]e^{\xi - 1} \\ & \!\!+ (11756/23)( - 1368/2939 + \beta^{2} - 1368\beta /2939)\cdot\\ & \qquad \qquad \left( {(\xi - 1/2)\eta - \xi /2} \right)e^{ - 1} \\ & \!\! +(\beta^{2} /828)(\xi - 1)\eta^{9} + 3\beta (\xi - 1)\eta^{8} /322\\ & \!\! + (22/483)(\beta^{2} - 3/11\beta + 9/22)(\xi - 1)\eta^{7} \\ & \!\!+ (34/115)(\beta - 3/17)(\xi - 1)\eta^{6} \\ & \!\! + \;(9/46)(\beta^{2} - 26\beta /15 + 13/5)(\xi - 1)\eta^{5} \\ & \!\! + (28/23)(\xi - 1)(\beta - 6/7)\eta^{4} \\ & \!\! - (68/69)(3 + \beta )(\beta - 3/17)(\xi - 1)\eta^{3} \\ & \!\! + \;\left[ {\left(11\xi^{4} /138 - 68\xi^{3} /69 + 3914/23 - 822533\xi /2898 + 1\xi^{9} /828 \right.}\right.\\ & \qquad \left.{\left.+ 9\xi^{5} /46 - 2\xi^{6} /69 + 22\xi^{7} /483 - 1\xi^{8} /644\right)\beta^{2} } \right. \\ & \qquad + (33\xi^{4} /23 - 60\xi^{3} /23 - 2004/23 + 244171\xi /1610\\ & \qquad \qquad- 12\xi^{5} /23 + 36\xi^{6} /115 - 4\xi^{7} /161 + 3\xi^{8} /322)\beta \\ & \qquad - \;63\xi^{4} /46 + 24\xi^{3} /23 + 119538\xi /805 \\ & \qquad \qquad -2088/23 + 3\xi^{7} /161 + 27\xi^{5} /46 - \left. {9\xi^{6} /115} \right]\eta \\ & \!\! + (2750/23)(\xi - 1)(\beta^{2} - 606\beta /1375 - 666/1375)\} \quad \, for \, \xi \ge \eta .\\ \end{aligned}$$
(45)

B3 Particular solution for the deflection’s covariance function, where an exponential form is used for the flexibility covariance function \(\text{cov}_{f}\), and the load is a general sinusoidal function:

$$\begin{aligned} \chi_{nk} \left( {\xi ,\eta } \right) & = \frac{{a^{2} q_{0}^{2} L^{8} }}{{\left( {\pi^{2} n^{2} + \alpha^{2} } \right)^{2} \left( {k^{2} \pi^{2} + \alpha^{2} } \right)^{2} \left( {k - n} \right)^{3} \left( {k + n} \right)^{3} \alpha^{6} n^{6} \pi^{8} k^{6} }} \cdot \\ & \left[ {n^{4} \left( {\left( {\pi^{2} \alpha^{3} n^{2} - \alpha^{5} } \right)\sin \left( {n\pi \xi } \right) - 2\cos \left( {n\pi \xi } \right)n\pi \alpha^{4} + \sin \left( {n\pi } \right)\left( {\pi^{2} n^{2} + \alpha^{2} } \right)^{2} \left( {\alpha \xi + 2} \right)} \right) \cdot } \right. \\ & \left( {k - n} \right)^{3} \left( {\left( {\pi^{2} \alpha^{3} k^{2} - \alpha^{5} } \right)\sin \left( {k\pi \eta } \right) + 2\cos \left( {k\pi \eta } \right)k\pi \alpha^{4}}\right. \\ & \quad + \left.{\sin \left( {k\pi } \right)\left( {\pi^{2} k^{2} + \alpha^{2} } \right)^{2} \left( {\alpha \eta - 2} \right)} \right)k^{4} \left( {k + n} \right)^{3} \pi^{4} e^{{\alpha \left( {\eta - \xi } \right)}} \\ & \quad + \;n^{4} k^{4} \left( {\left( {\pi^{2} \alpha^{3} k^{2} - \alpha^{5} } \right)\sin \left( {k\pi \eta } \right) - 2\cos \left( {k\pi \eta } \right)k\pi \alpha^{4} + \sin \left( {k\pi } \right)\left( {\pi^{2} k^{2} + \alpha^{2} } \right)^{2} \left( {\alpha \eta + 2} \right)} \right) \cdot \\ & \quad \left( {\sin \left( {n\pi } \right)\left( {\pi^{2} n^{2} + \alpha^{2} } \right)^{2} \left( {\alpha \xi + 2} \right) - n\pi \alpha^{3} \left( {\pi^{2} n^{2} \xi + \alpha^{2} \xi + 2\alpha } \right)} \right)\left( {k - n} \right)^{3} \left( {k + n} \right)^{3} \pi^{4} e^{ - \alpha \eta } \\ & \quad + \;n^{4} k^{4} \left( {\left( {\pi^{2} \alpha^{3} n^{2} - \alpha^{5} } \right)\sin \left( {n\pi \xi } \right) - 2\cos \left( {n\pi \xi } \right)n\pi \alpha^{4} + \sin \left( {n\pi } \right)\left( {\pi^{2} n^{2} + \alpha^{2} } \right)^{2} \left( {\alpha \xi + 2} \right)} \right) \cdot \\ & \quad \left( {\sin \left( {k\pi } \right)\left( {\pi^{2} k^{2} + \alpha^{2} } \right)^{2} \left( {\alpha \eta + 2} \right) - k\pi \alpha^{3} \left( {\pi^{2} k^{2} \eta + \alpha^{2} \eta + 2\alpha } \right)} \right)\left( {k - n} \right)^{3} \left( {k + n} \right)^{3} \pi^{4} e^{ - \alpha \xi } \\ & \quad + \;2n^{4} \left( {k^{2} \pi^{2} + \alpha^{2} } \right)^{2} \alpha^{3} \sin \left( {k\eta \pi } \right) \cdot \left\{ { - k^{4} \pi^{2} \alpha^{4} \left( {\pi^{2} n^{2} + \alpha^{2} } \right)\left( {k - n} \right)\left( {k + n} \right)\left( {k^{2} + n^{2} } \right)\left( {\xi - \eta } \right)\sin \left( {\eta n\pi } \right)} \right. \\ & \quad + \;2n\alpha^{4} k^{4} \pi \left( {\pi^{2} k^{4} - 3\left( {\pi^{2} n^{2} + \alpha^{2} } \right)k^{2} - 2\pi^{2} n^{4} - \alpha^{2} n^{2} } \right)\cos \left( {\eta n\pi } \right) \\ & \quad + \left( {\pi^{2} n^{2} + \alpha^{2} } \right)^{2} \left. {\left( {\left( { - 2 + \eta \left( {\xi - \eta } \right)\alpha^{2} } \right)\pi^{2} k^{2} + 6\alpha^{2} } \right)\left( {k - n} \right)^{3} \sin \left( {n\pi } \right)\left( {k + n} \right)^{3} } \right\} \\ & \quad + \;\left( {k/6} \right)\left\{ {24n^{4} \left( {k^{2} \pi^{2} + \alpha^{2} } \right)^{2} \alpha^{5} \pi \cos \left( {k\pi \eta } \right)} \right. \\ & \quad \cdot \left[ { - \alpha^{2} k^{4} \left( {\left( {\pi^{2} n^{2} - \alpha^{2} } \right)k^{2} - 5\pi^{2} n^{4} - 3\alpha^{2} n^{2} } \right)\sin \left( {\eta n\pi } \right)} \right. - \left( {\pi^{2} n^{2} + \alpha^{2} } \right)\left( {k - n} \right)\\ & \quad \left( {k + n} \right)k^{4} n\pi \alpha^{2} \left( {\xi - \eta } \right)\cos \left( {\eta n\pi } \right)\left. { + \left( {\pi^{2} n^{2} + \alpha^{2} } \right)^{2} \left( {k - n} \right)^{3} \left( {k + n} \right)^{3} \left( {\xi - 2\eta } \right)\sin \left( {n\pi } \right)} \right] \\ & \quad + \;\left( {k - n} \right)\left( {k + n} \right) \cdot \left\{ {12\left( {k^{2} \pi^{2} + \alpha^{2} } \right)^{2} \left( {k - n} \right)^{2} \left( {k + n} \right)^{2} \alpha^{7} k^{3} \left( {\pi^{4} \eta \left( {\xi - \eta } \right)n^{4}}\right.}\right. \\ & \quad + \left.{\left.{\pi^{2} \left( {10 + \eta \left( {\xi - \eta } \right)\alpha^{2} } \right)n^{2} + 6\alpha^{2} } \right)\sin \left( {k\pi } \right)\sin \left( {\eta n\pi } \right)} \right. \\ & \quad + \;n\pi \left\{ {24\left( {k^{2} \pi^{2} + \alpha^{2} } \right)^{2} \left( {\pi^{2} \left( {\xi - 3\eta } \right)n^{2} + \alpha^{2} \left( {\xi - 2\eta } \right)} \right)\left( {k - n} \right)^{2} \left( {k + n} \right)^{2} \alpha^{7} k^{3} \sin \left( {k\pi } \right)\cos \left( {\eta n\pi } \right)} \right. \\ & \quad + \left( {n^{2} \pi^{2} + \alpha^{2} } \right)^{2} n^{3} \left( {k - n} \right)^{2} \left( {k + n} \right)^{2} \sin \left( {n\pi } \right) \cdot \\ & \quad \left[ {\left( {k^{2} \pi^{2} + \alpha^{2} } \right)^{2} k^{3} \pi^{3} \sin \left( {k\pi } \right)\left( { - 24 + \eta^{4} \left( {\xi - 3\eta /5} \right)\alpha^{5} - 4\alpha^{3} \eta^{3} + 6\alpha^{2} \xi \eta - 12\left( {\xi - \eta } \right)\alpha } \right)} \right. \\ & \quad \left. { - \;6\alpha^{3} \left( {\pi^{6} \eta \left( {\alpha \xi - 2} \right)k^{6} + \pi^{4} \alpha \left( {\alpha \eta + 2} \right)\left( {\alpha \xi - 2} \right)k^{4} + 8\left( {\xi + \eta /2} \right)\alpha^{4} k^{2} \pi^{2} + 4\alpha^{6} \left( {\xi + \eta } \right)} \right)} \right] \\ & \quad - \,6\alpha^{3} k^{3} \left\{ {\left( {k^{2} \pi^{2} + \alpha^{2} } \right)^{2} \left( {k - n} \right)^{2} \left( {k + n} \right)^{2} \sin \left( {k\pi } \right) \cdot } \right.\left( {\pi^{6} \xi \left( {\alpha \eta - 2} \right)n^{6} + \pi^{4} \alpha \left( {\alpha \eta - 2} \right)\left( {\alpha \xi + 2} \right)n^{4}}\right. \\ & \quad + \left.{4\left( {\xi + 2\eta } \right)\alpha^{4} n^{2} \pi^{2} + 4\alpha^{6} \left( {\xi + \eta } \right)} \right) \\ & \quad - \;n^{4} \alpha^{3} k\pi \left[ {\pi^{6} \eta \left( {n^{2} \pi^{2} \xi + \alpha^{2} \xi - 2\alpha } \right)k^{6} - 2\left( {n^{2} \pi^{2} \xi + \alpha^{2} \xi - 2\alpha } \right)\pi^{4} \left( {n^{2} \pi^{2} \eta - \eta \alpha^{2} /2 - \alpha } \right)k^{4} } \right. \\ & \quad + \;\pi^{2} k^{2} \left( {n^{6} \pi^{6} \xi \eta - \pi^{4} \alpha \left( {\alpha \xi \eta - 2\eta - 4\xi } \right)n^{4} - 2\left( { - 4 + \alpha^{2} \xi \eta - 6\alpha \left( {\xi + \eta } \right)} \right)\alpha^{2} n^{2} \pi^{2} + 8\alpha^{5} \left( {\xi + \eta /2} \right)} \right) \\ & \quad \left. { + \;\alpha \left( {\pi^{6} n^{6} \xi \left( {\alpha \eta - 2} \right) + \pi^{4} n^{4} \alpha \left( {\alpha \eta - 2} \right)\left( {\alpha \xi + 2} \right) + 4\alpha^{4} \pi^{2} n^{2} \left( {\xi + 2\eta } \right) + 4\alpha^{6} \left( {\xi + \eta } \right)} \right)} \right]\left. {} \right\}\left. {} \right\}\left. {} \right\}\left. {} \right\}\left. {} \right] \quad {\text{ for}}\; \xi \ge \eta .\\ \end{aligned}$$
(46)

B4 Particular solution for the deflection’s covariance function, where a Matérn form is used for the flexibility covariance function \(\text{cov}_{f}\), and the load is a general sinusoidal function:

$$\begin{aligned}\chi_{nk} \left( {\xi ,\eta } \right) & = \frac{{q_{0}^{2} a^{2} L^{8} e^{ - \eta - \xi } }}{{\left( {\pi^{2} n^{2} + 1} \right)^{3} \left( {\pi^{2} k^{2} + 1} \right)^{3} \left( {k - n} \right)^{3} \left( {k + n} \right)^{3} k^{6} n^{6} \pi^{8} }} \cdot \\ & \left\{ {n^{4} \left\{ {e^{2\eta } k^{4} \left( {k + n} \right)^{3} \left( {k - n} \right)^{3} \left( {\left( {\pi^{4} \left( {1 + \xi - \eta } \right)n^{4} + 6\pi^{2} n^{2} - \xi + \eta - 3} \right)\pi^{4} k^{4} + \left( {6\pi^{6} n^{4} - 6\pi^{2} } \right)k^{2}}\right.}\right.}\right. \\ & \quad - \left.{\left.{\left.{\pi^{4} \left( {\xi - \eta + 3} \right)n^{4} - 6\pi^{2} n^{2} + \xi - \eta + 5} \right)\pi^{4} \sin \left( {n\pi \xi } \right)} \right.} \right. \\ & \quad - 2e^{2\eta } k^{4} \left( {k + n} \right)^{3} n\left( {k - n} \right)^{3} \left( {\left( {\pi^{2} \left( {\xi - \eta } \right)n^{2} + \xi - \eta + 4} \right)\pi^{4} k^{4} + \left( {6\pi^{4} n^{2} + 6\pi^{2} } \right)k^{2}}\right. \\ & \quad - \left.{\pi^{2} \left( {\xi - \eta + 2} \right)n^{2} - \xi + \eta - 6} \right)\pi^{5} \cos \left( {n\pi \xi } \right) \\ & \quad - 4e^{\eta + \xi } k^{4} \pi^{2} \left( {\pi^{2} n^{2} + 1} \right)\left( {\pi^{2} k^{2} + 1} \right)^{3} \left( {k - n} \right)\left( {k + n} \right)\left( {k^{2} + n^{2} } \right)\left( {\xi - \eta } \right)\sin \left( {\eta n\pi } \right) \\ & \quad+ 16k^{4} \left( {\pi^{2} k^{2} + 1} \right)^{3} n\left( {\pi^{2} k^{4} + \left( { - \pi^{2} n^{2} - 1} \right)3k^{2} /2 - 3\pi^{2} n^{4} /2 - n^{2} /2} \right)e^{\eta + \xi } \pi \cos \left( {\eta n\pi } \right) \\ & \quad + (k + n)^{3} \left\{ {\left( {\pi^{2} n^{2} + 1} \right)^{3} \left[ {k^{4} \left( {\left( {\left( { - \xi - 2} \right)\eta}\right.}\right.}\right.}\right. \\ & \quad + \left.{\left.{\left.{\left.{\xi^{2} + 5\xi + 8} \right)\pi^{4} k^{4} + 6\pi^{2} \left( {\xi + 2} \right)k^{2} + \left( {\xi + 2} \right)\eta - \xi^{2} - 7\xi - 12} \right)\pi^{4} e^{2\eta } } \right.} \right. \\ & \quad \left. { + 4\left( {\pi^{2} k^{2} + 1} \right)^{3} \left( {6 + \pi^{2} \left( { - \eta^{2} + \eta \xi - 4} \right)k^{2} } \right)e^{\eta + \xi } + k^{4} e^{\xi } \pi^{4} \left( {\left( {\left( {\xi + 2} \right)\eta + 3\xi + 8} \right)\pi^{4} k^{4} + 6\pi^{2} \left( {\xi + 2} \right)k^{2}}\right.}\right. \\ & \quad + \left.{\left.{\left( { - \xi - 2} \right)\eta - 5\xi - 12} \right)} \right]\sin \left( {n\pi } \right) \\ & \quad - \left[ {\left( {\pi^{4} \xi \left( {\eta + 1} \right)n^{4} + 2\left( {\left( {\xi + 1} \right)\eta + 2\xi } \right)\pi^{2} n^{2} + \left( {\xi + 2} \right)\eta + 3\xi + 8} \right)\pi^{4} k^{4} + 6\pi^{2} \left( {\pi^{2} n^{2} + 1} \right)\left( {\pi^{2} n^{2} \xi + \xi + 2} \right)k^{2} } \right. \\ & \quad \left. {\left. {\left. { - \pi^{4} \xi \left( {\eta + 3} \right)n^{4} - 2\left( {\left( {\xi + 1} \right)\eta + 4\xi + 2} \right)\pi^{2} n^{2} + \left( { - \xi - 2} \right)\eta - 5\xi - 12} \right]k^{4} e^{\xi } n\pi^{5} } \right\}(k - n)^{3} } \right\}\sin (k\pi \eta ) \\ & \quad + k\left\{ {2n^{4} \left\{ {e^{2\eta } k^{4} \left( {k + n} \right)^{3} \left( {k - n} \right)^{3} \left( {\pi^{2} \left( {\pi^{4} \left( {\xi - \eta } \right)n^{4} + 6\pi^{2} n^{2} - \xi + \eta - 2} \right)k^{2} + \pi^{4} \left( {\xi - \eta + 4} \right)n^{4}}\right.}\right.}\right.\\ & \quad \left.{\left.{\left.{+ 6\pi^{2} n^{2} - \xi + \eta - 6} \right)\pi^{4} \sin \left( {n\pi \xi } \right)} \right.} \right. \\ & \quad - 2\left( {\left( {\pi^{2} \left( {\xi - \eta - 1} \right)n^{2} + \xi - \eta + 3} \right)\pi^{2} k^{2} + \pi^{2} \left( {\xi - \eta + 3} \right)n^{2} + \xi - \eta + 7} \right)e^{2\eta } k^{4} \left( {k + n} \right)^{3} n\left( {k - n} \right)^{3} \pi^{5} \cos \left( {n\pi \xi } \right) \\ & \quad - 12k^{4} \left( {\pi^{2} k^{2} + 1} \right)^{3} \left( {\left( {\pi^{2} n^{2} - 1/3} \right)k^{2} - 7\pi^{2} n^{4} /3 - n^{2} } \right)e^{\eta + \xi } \sin \left( {\eta n\pi } \right) + (k + n)(k - n)\\ & \quad\left\{ { - 4e^{\eta + \xi } k^{4} n\pi \left( {\pi^{2} n^{2} + 1} \right)\left( {\pi^{2} k^{2} + 1} \right)^{3} \left( {\xi - \eta } \right)\cos \left( {\eta n\pi } \right) + \left( {k + n} \right)^{2} \left( {k - n} \right)^{2} \left\{ {(\pi^{2} n^{2} + 1)^{3} } \right. \cdot } \right. \\ & \left[ {k^{4} \left( {\left( {\left( { - \xi - 2} \right)\eta + \xi^{2} + 4\xi + 6} \right)\pi^{2} k^{2} + \left( { - \xi - 2} \right)\eta + \xi^{2} + 8\xi + 14} \right)\pi^{4} e^{2\eta } + 4\left( {\pi^{2} k^{2} + 1} \right)^{3} \left( {\xi - 2\eta } \right)e^{\eta + \xi }}\right.\\ & \quad \left.{- k^{4} e^{\xi } \left( {\left( {\left( {\xi + 2} \right)\eta + 2\xi + 6} \right)\pi^{2} k^{2} + \left( {\xi + 2} \right)\eta + 6\xi + 14} \right)\pi^{4} } \right]\sin (n\pi ) \\ & \quad + \left. {\left. {\left. {\left( {\left( {n^{4} \pi^{4} \xi \eta + 2\left( {\left( {\xi + 1} \right)\eta + \xi - 1} \right)\pi^{2} n^{2} + \left( {\xi + 2} \right)\eta + 2\xi + 6} \right)\pi^{2} k^{2} + \pi^{4} \xi \left( {\eta + 4} \right)n^{4}}\right.}\right.}\right.}\right.\\ & \quad \left.{\left.{\left.{\left.{+ 2\left( {\left( {\xi + 1} \right)\eta + 5\xi + 3} \right)\pi^{2} n^{2} + \left( {\xi + 2} \right)\eta + 6\xi + 14} \right)k^{4} e^{\xi } n\pi^{5} } \right\}} \right\}} \right\}\pi \cos (k\pi \eta ) \\ & \quad + \, (k \, + \, n)(k \, - \, n)\left\{ {k^{3} (k + n)^{2} n^{4} (k - n)^{2} } \right. \cdot \left\{ {\left( {\pi^{2} k^{2} + 1} \right)^{3} } \right.\left[ {\left( {\left( { - \eta^{2} + \left( {\xi + 5} \right)\eta - 2\xi - 8} \right)\pi^{4} n^{4} }\right.}\right.\\ & \quad + \left.{\left.{6\pi^{2} \left( {\eta - 2} \right)n^{2} + \eta^{2} + \left( { - \xi - 7} \right)\eta + 2\xi + 12} \right)} \right.e^{2\eta } \\ & \quad \left. { + \left( {\left( {\left( {\xi + 3} \right)\eta + 2\xi + 8} \right)\pi^{4} n^{4} + 6\pi^{2} \left( {\eta + 2} \right)n^{2} + \left( { - \xi - 5} \right)\eta - 2\xi - 12} \right)e^{\eta } } \right]\sin \left( {k\pi } \right) \\ & \quad - ke^{\eta } \left[ {\left( {\pi^{4} \left( {\xi + 1} \right)n^{4} + 6\pi^{2} n^{2} - \xi - 3} \right)\eta \pi^{4} k^{4} } \right. + 2\pi^{2} \left( {\left( {\left( {\xi + 2} \right)\eta + \xi } \right)\pi^{4} n^{4}}{6\pi^{2} \left( {\eta + 1} \right)n^{2} + \left( { - \xi - 4} \right)\eta - \xi - 2} \right)k^{2} \\ & \quad + \left. {\left. {\left( {\left( {\xi + 3} \right)\eta + 2\xi + 8} \right)\pi^{4} n^{4} + 6\pi^{2} \left( {\eta + 2} \right)n^{2} + \left( { - \xi - 5} \right)\eta - 2\xi - 12} \right]\pi } \right\}\pi^{4} \sin (n\pi \xi ) \\ & \quad - \, 2\left\{ {\left( {\left( {\left( { - \eta^{2} + \left( {\xi + 4} \right)\eta - 2\xi - 6} \right)\pi^{2} n^{2} - \eta^{2} + \left( {\xi + 8} \right)\eta - 2\xi - 14} \right)e^{2\eta } }\right.}\right.\\ & \quad +\left.{\left.{ \left( {\left( {\left( {\xi + 2} \right)\eta + 2\xi + 6} \right)\pi^{2} n^{2} + \left( {\xi + 6} \right)\eta + 2\xi + 14} \right)e^{\eta } } \right)} \right.\left( {\pi^{2} k^{2} + 1} \right)^{3} \sin \left( {k\pi } \right) \\ & \quad - ke^{\eta } \pi \left. {\left( {\eta \pi^{4} \left( {\pi^{2} n^{2} \xi + \xi + 4} \right)k^{4} + 2\left( {\left( {\left( {\xi + 1} \right)\eta + \xi - 1} \right)\pi^{2} n^{2} + \left( {\xi + 5} \right)\eta + \xi + 3} \right)\pi^{2} k^{2}}\right.}\right. \\ & \quad +\left.{\left.{ \left( {\left( {\xi + 2} \right)\eta + 2\xi + 6} \right)\pi^{2} n^{2} + \left( {\xi + 6} \right)\eta + 2\xi + 14} \right)} \right\}k^{3} (k + n)^{2} n^{5} (k - n)^{2} \pi^{5} \cos (n\pi \xi ) \\ & \quad + 4k^{3} \left( {\pi^{2} k^{2} + 1} \right)^{3} \left( {k + n} \right)^{2} \left( {6 + \eta \pi^{4} \left( {\xi - \eta } \right)n^{4} + \pi^{2} \left( { - \eta^{2} + \eta \xi + 14} \right)n^{2} } \right)\left( {k - n} \right)^{2} e^{\eta + \xi } \sin \left( {k\pi } \right)\sin \left( {\eta n\pi } \right) \\ & \quad + \left\{ {8k^{3} \left( {\pi^{2} \left( {\xi - 4\eta } \right)n^{2} + \xi - 2\eta } \right)} \right.\left( {\pi^{2} k^{2} + 1} \right)^{3} \left( {k + n} \right)^{2} \left( {k - n} \right)^{2} e^{\eta + \xi } \sin \left( {k\pi } \right)\cos \left( {\eta n\pi } \right) \\ & \quad + (\pi^{2} n^{2} + 1)^{3} (k + n)^{2} n^{3} (k - n)^{2} \left\{ {k^{3} \left( {\pi^{2} k^{2} + 1} \right)} \right.^{3} \left[ {\left( {\left( { - \xi - 2} \right)\eta^{2} + \left( {\xi^{2} + 9\xi + 16} \right)\eta - 2\xi^{2} }\right.}\right.\\ & \quad - \left.{\left.{16\xi - 28} \right)} \right.e^{2\eta } + \left( { - \eta^{5} /5 + \xi \eta^{4} /3 - 8\eta^{3} /3 + \left( {12 + 5\xi } \right)\eta - 12\xi - 28} \right)e^{\eta + \xi } \\ & \quad + \left( {\left( {\xi^{2} + 7\xi + 12} \right)\eta + 2\xi^{2} + 16\xi + 28} \right)e^{\eta } + \left. {\left( {\left( {\xi + 2} \right)\eta^{2} + \left( {7\xi + 16} \right)\eta + 12\xi + 28} \right)e^{\xi } } \right]\pi^{3} \sin \left( {k\pi } \right) \\ & \quad + \left( { - \left( {3\xi - 8} \right)\eta \pi^{8} k^{8} - 4\left( {\left( {2\xi - 5} \right)\eta + \xi - 3} \right)\pi^{6} k^{6} - \left( {\left( {5\xi - 12} \right)\eta + 12\xi - 28} \right)\pi^{4} k^{4}}\right. \\ & \quad - \left.{24\left( {\xi + \eta /3} \right)\pi^{2} k^{2} - 8\xi - 8\eta } \right)e^{\eta + \xi } \\ & \quad - k^{4} \left. {\left( {\eta \pi^{4} \left( {\xi^{2} + 5\xi + 8} \right)k^{4} + 2\left( {\left( {\xi^{2} + 6\xi + 10} \right)\eta + \xi^{2} + 4\xi + 6} \right)\pi^{2} k^{2} }\right.}\right.\\ & \quad +\left.{\left.{ \left( {\xi^{2} + 7\xi + 12} \right)\eta + 2\xi^{2} + 16\xi + 28} \right)e^{\eta } \pi^{4} } \right\}\sin (n\pi ) \\ & \quad - 3k^{3} \left\{ {\left( {\pi^{2} k^{2} + 1} \right)} \right.^{3} \left( {k + n} \right)^{2} \left\{ {\left( {\xi \pi^{8} \left( { - 8 + 3\eta } \right)n^{8} + 4\left( {\left( {2\xi + 1} \right)\eta - 5\xi - 3} \right)\pi^{6} n^{6} + \left( {\left( {5\xi + 12} \right)\eta }\right.}\right.}\right.\\ & \quad - \left.{\left.{\left.{12\xi - 28} \right)\pi^{4} n^{4} + 8\pi^{2} \left( {\xi + 3\eta } \right)n^{2} + 8\xi + 8\eta } \right)} \right.e^{\eta + \xi } /3 \\ & \quad + e^{\xi } n^{4} \left. {\left( {\pi^{4} \xi \left( {\eta^{2} + 5\eta + 8} \right)n^{4} + 2\left( {\left( {\xi + 1} \right)\eta^{2} + \left( {6\xi + 4} \right)\eta + 10\xi + 6} \right)\pi^{2} n^{2} + \left( {\xi + 2} \right)\eta^{2}}\right.}\right. \\ & \quad + \left.{\left.{\left( {7\xi + 16} \right)\eta + 12\xi + 28} \right)\pi^{4} /3} \right\}(k - n)^{2} \sin (k\pi ) \\ & \quad - kn^{4} \left\{ {\eta \pi^{8} \left( {\pi^{4} n^{4} \xi + 4\pi^{2} n^{2} \xi + 3\xi - 8} \right)} \right.k^{8} - 2\left( {n^{6} \pi^{6} \xi \eta + 2n^{4} \pi^{4} \xi \eta}\right.\\ & \quad -\left.{\pi^{2} \left( {3\left( {\xi + 2} \right)\eta + 2\xi + 2} \right)n^{2} + \left( { - 4\xi + 10} \right)\eta - 2\xi + 6} \right)\pi^{6} k^{6} \\ & \quad + \left( {n^{8} \pi^{8} \xi \eta - 4n^{6} \pi^{6} \xi \eta + \left( { - 18\eta \xi - 8} \right)\pi^{4} n^{4} -4\left({\left( {2\xi - 9} \right)\eta - 3\xi - 3} \right)\pi^{2} n^{2} +\left( {5\xi - 12} \right)\eta + 12\xi - 28} \right)\pi^{4} k^{4}\\ & \quad + 2\left( {2n^{8} \pi^{8} \xi \eta + \left( {\left( {3\xi + 2} \right)\eta + 6\xi + 2} \right)\pi^{6} n^{6} - 2\left( {\left( {2\xi - 3} \right)\eta - 9\xi - 3} \right)\pi^{4} n^{4} }\right.\\ & \quad-\left.{ \left( {\left( {5\xi - 24} \right)\eta - 24\xi - 28} \right)\pi^{2} n^{2} + 12\xi + 4\eta } \right)\pi^{2} k^{2} \\ & \quad \left. {\left. {\left. {\left. {\left. {\left. { + \xi \pi^{8} \left( { - 8 + 3\eta } \right)n^{8} + 4\left( {\left( {2\xi + 1} \right)\eta - 5\xi - 3} \right)\pi^{6} n^{6} + \left( {\left( {5\xi + 12} \right)\eta - 12\xi - 28} \right)\pi^{4} n^{4}}\right.}\right.}\right.}\right.}\right.}\right.\\ & \quad + \left.{\left.{\left.{\left.{\left.{\left.{8\pi^{2} \left( {\xi + 3\eta } \right)n^{2} + 8\xi + 8\eta } \right\}e^{\eta + \xi } \pi /3} \right\}} \right\}n\pi } \right\}} \right\}} \right\}\quad {\text{for}} \;\xi \ge \eta. \\ \end{aligned}$$
(47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkiel, N., Rabinovitch, O. & Elishakoff, I. Exact solutions for stochastic Bernoulli–Euler beams under deterministic loading. Acta Mech 232, 2201–2224 (2021). https://doi.org/10.1007/s00707-020-02895-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02895-1

Navigation