Skip to main content
Log in

Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The overall time-dependent and nonlinear responses of two-phase magnetostrictive polymer composites are obtained by coupling micromechanical analysis for magnetoelastic coupled composites with a time-integration algorithm for thermorheologically complex materials. The nonlinear magnetoelastic behavior is due to large magnetic driving fields while the nonlinear viscoelastic response is associated with stress and temperature. Because of the material nonlinearity of these constituents, linearized constitutive relations are first defined for obtaining the trial overall responses of the magnetostrictive composites followed by an iterative scheme in order to correct errors from linearizing the nonlinear responses. The presented micromechanical formulation is applicable to magnetostrictive composites reinforced by continuous fiber, particle, and lamina reinforcements. The predicted responses of the composites are first validated with the experimental data available in the literature. Numerical results are then presented for the magnetostrictive composites with 1–3, 0–3, and 2–2 connectivity in terms of their strain and magnetic flux density responses. Time-dependent and nonlinear behaviors show the different degrees of the dependency on microstructural geometry, reinforcement volume fraction, environmental temperature, and loading rate of magnetic and mechanical inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aboudi, J.: Mechanics of Composite Materials: a Unified Micromechanical Approach. Elsevier, Amsterdam (1991)

    MATH  Google Scholar 

  2. Aboudi, J., Arnold, S.M., Bednarcyk, B.A.: Micromechanics of Composite Materials: a Generalized Multiscale Analysis Approach. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  3. Aboudi, J., Zheng, X., Jin, K.: Micromechanics of magnetostrictive composites. Int. J. Eng. Sci. 81, 82–99 (2014)

    Article  MathSciNet  Google Scholar 

  4. Anjanappa, M., Wu, Y.: Magnetostrictive particulate actuators: configuration, modeling and characterization. Smart Mater. Struct. 6, 393–402 (1997)

    Article  Google Scholar 

  5. Carman, G., Mitrovic, M.: Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems. J. Intel. Mat. Syst. Str. 6(5), 673–683 (1995)

    Article  Google Scholar 

  6. Deng, Z., Dapino, M.J.: Review of magnetostrictive materials for structural vibration control. Smart Mater. Struct. 27, 113001 (2018)

    Article  Google Scholar 

  7. Elhajjar, R.F., Law, C.T.: Magnetomechanical local-global effects in magnetostrictive composite materials. Model. Simul. Mater. Sci. Eng. 23, 075002 (2015)

    Article  Google Scholar 

  8. Elhajjar, R., Law, C., Pegoretti, A.: Magnetostrictive polymer composites: recent advances in materials, structures and properties. Prog. Mater Sci. 97, 204–229 (2018)

    Article  Google Scholar 

  9. Engdahl, G.: Handbook of Giant Magnetostrictive Materials. Academic Press, London (2000)

    Google Scholar 

  10. Espinosa-Almeyda, Y., Camacho-Montes, H., Nava-Gómez, G.G., Madrazo, B.J.M., Guinovart-Díaz, R., López-Realpozo, J.C.: The influence of galfenol constituent in the improvement of the magnetoelectric coupling effect for composite materials. Math. Method Appl. Sci. 40(9), 3320–3332 (2017)

    Article  MathSciNet  Google Scholar 

  11. Fan, Y., Gomez, A., Ferraro, S., Pinto, B., Muliana, A., Saponara, V.L.: Diffusion of water in glass fiber reinforced polymer composites at different temperatures. J. Compos. Mater. 53(8), 1097–1110 (2019)

    Article  Google Scholar 

  12. Ferry, J.D.: Viscoelastic Properties of Polymers, 3rd edn. Wiley, NewYork (1980)

    Google Scholar 

  13. Guan, X., Dong, X., Ou, J.: Predicting performance of polymer-bonded Terfenol-D composites under different magnetic fields. J. Magn. Magn. Mater. 321(18), 2742–2748 (2009)

    Article  Google Scholar 

  14. Haj-Ali, R.M., Muliana, A.: A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures. Int. J. Solids Struct. 41(13), 3461–3490 (2004)

    Article  Google Scholar 

  15. Haj-Ali, R.M., Muliana, A.H.: Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int. J. Numer. Method Eng. 59(1), 25–45 (2004)

    Article  Google Scholar 

  16. Harper, B.D., Weitsman, Y.: Characterization method for a class of thermorheologically complex materials. J. Rheol. 29(1), 49–66 (1985)

    Article  Google Scholar 

  17. Herbst, J.F., Capehart, T.W., Pinkerton, F.E.: Estimating the effective magnetostriction of a composite: a simple model. Appl. Phys. Lett. 70(22), 3041–3043 (1997)

    Article  Google Scholar 

  18. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)

    Article  Google Scholar 

  19. Hogea, C.S., Armstrong, W.D.: The time-dependent magneto-visco-elastic behavior of a magnetostrictive fiber actuated viscoelastic polymer matrix composite. J. Acoust. Soc. Am. 112(5), 1928–1936 (2002)

    Article  Google Scholar 

  20. Jiles, D.C., Thoelke, J.B.: Magnetization and magnetostriction in Terbium–Dysprosium–Iron alloys. Phys. Status Solidi A 147(2), 535–551 (1995)

    Article  Google Scholar 

  21. Kuo, H., Peng, C.: Magnetoelectricity in coated fibrous composites of piezoelectric and piezomagnetic phases. Int. J. Eng. Sci. 62, 70–83 (2013)

    Article  MathSciNet  Google Scholar 

  22. Lin, C., Muliana, A.: Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites. Acta Mech. 224(7), 1471–1492 (2013)

    Article  MathSciNet  Google Scholar 

  23. Lin, C., Muliana, A.: Nonlinear electro-mechanical responses of functionally graded piezoelectric beams. Compos. Part B Eng. 72, 53–64 (2015)

    Article  Google Scholar 

  24. Lo, C.Y., Or, S.W., Chan, H.L.W.: Large magnetostriction in epoxy-bonded Terfenol-D continuous-fiber composites with [112] crystallographic orientation. IEEE Trans. Magn. 42(10), 3111–3113 (2006)

    Article  Google Scholar 

  25. Moffett, M.B., Clark, A.E., Wun-Fogle, M., Linberg, J., Teter, J.P., McLaughlin, E.A.: Characterization of Terfenol-D for magnetostrictive transducers. J. Acoust. Soc. Am. 89(3), 1448–1455 (1991)

    Article  Google Scholar 

  26. Muliana, A., Khan, K.A.: A time-integration algorithm for thermo-rheologically complex polymers. Comp. Mater. Sci. 41(4), 576–588 (2008)

    Article  Google Scholar 

  27. Nan, C.: Effective magnetostriction of magnetostrictive composites. Appl. Phys. Lett. 72(22), 2897–2899 (1998)

    Article  Google Scholar 

  28. Nan, C., Weng, G.J.: Influence of microstructural features on the effective magnetostriction of composite materials. Phys. Rev. B 60(9), 6723–6730 (1999)

    Article  Google Scholar 

  29. Newacheck, S., Youssef, G.: Synthesis and characterization of polarized novel 0–3 Terfenol-D/PVDF-TrFE composites. Compos. Part B Eng. 172, 97–102 (2019)

    Article  Google Scholar 

  30. Peretz, D., Weitsman, Y.: Nonlinear viscoelastic characterization of FM-73 adhesive. J. Rheol. 26(3), 245–261 (1982)

    Article  Google Scholar 

  31. Peretz, D., Weitsman, Y.: The nonlinear thermoviscoelastic characterizations of FM-73 adhesives. J. Rheol. 27(2), 97–114 (1983)

    Article  Google Scholar 

  32. Rosen, B.W., Hashin, Z.: Effective thermal expansion coefficients and specific heats of composite materials. Int. J. Eng. Sci. 8(2), 157–173 (1970)

    Article  Google Scholar 

  33. Thomas, O.J., Busbridge, S.C., Tomka, G.J.: Magnetostrictive 1-3 composites with internal field biasing. IEEE Trans. Magn. 40(4), 2763–2765 (2004)

    Article  Google Scholar 

  34. Wineman, A.S., Rajagopal, K.R.: Mechanical Response of Polymers. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  35. Yu, W., Tang, T.: Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials. Int. J. Solids Struct. 44(11–12), 3738–3755 (2007)

    Article  MathSciNet  Google Scholar 

  36. Zhou, Y., Shin, F.G.: Modeling of magnetostriction in particulate composite materials. IEEE Trans. Magn. 41(6), 2071–2076 (2005)

    Article  Google Scholar 

  37. Zhong, Y., Chen, L., Yu, W., Zhou, X.: Variational asymptotic micromechanics modeling of heterogeneous magnetostrictive composite materials. Compos. Struct. 106, 502–509 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Ministry of Science and Technology (MOST), Taiwan, R.O.C. under the Grant MOST 107-2218-E-006-021-MY2, and was partly supported by Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University. The authors also greatly appreciate the help from their colleague Ying-Zhao Lin for providing Mori–Tanaka and Hashin–Shtrikman results for the experimental validation in Sect. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-hong Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The micromechanical relations for the strain relations among subcells are written as:

$$\begin{aligned} \varepsilon_{11}^{(1)} = \varepsilon_{11}^{(3)} = \varepsilon_{11}^{(5)} = \varepsilon_{11}^{(7)} , \hfill \\ \varepsilon_{11}^{(2)} = \varepsilon_{11}^{(4)} = \varepsilon_{11}^{(6)} = \varepsilon_{11}^{(8)} , \hfill \\ \end{aligned}$$
(39)
$$\begin{aligned} \varepsilon_{22}^{(1)} = \varepsilon_{22}^{(2)} = \varepsilon_{22}^{(5)} = \varepsilon_{22}^{(6)} , \hfill \\ \varepsilon_{22}^{(3)} = \varepsilon_{22}^{(4)} = \varepsilon_{22}^{(7)} = \varepsilon_{22}^{(8)} , \hfill \\ \end{aligned}$$
(40)
$$\begin{aligned} \varepsilon_{33}^{(1)} = \varepsilon_{33}^{(2)} = \varepsilon_{33}^{(3)} = \varepsilon_{33}^{(4)} , \hfill \\ \varepsilon_{33}^{(5)} = \varepsilon_{33}^{(6)} = \varepsilon_{33}^{(7)} = \varepsilon_{33}^{(8)} , \hfill \\ \end{aligned}$$
(41)
$$\begin{aligned} 2\varepsilon_{23}^{(1)} = 2\varepsilon_{23}^{(2)} , \hfill \\ 2\varepsilon_{23}^{(3)} = 2\varepsilon_{23}^{(4)} , \hfill \\ 2\varepsilon_{23}^{(5)} = 2\varepsilon_{23}^{(6)} , \hfill \\ 2\varepsilon_{23}^{(7)} = 2\varepsilon_{23}^{(8)} , \hfill \\ \end{aligned}$$
(42)
$$\begin{aligned} 2\varepsilon_{13}^{(1)} = 2\varepsilon_{13}^{(3)} , \hfill \\ 2\varepsilon_{13}^{(2)} = 2\varepsilon_{13}^{(4)} , \hfill \\ 2\varepsilon_{13}^{(5)} = 2\varepsilon_{13}^{(7)} , \hfill \\ 2\varepsilon_{13}^{(6)} = 2\varepsilon_{13}^{(8)} , \hfill \\ \end{aligned}$$
(43)
$$\begin{aligned} 2\varepsilon_{12}^{(1)} = 2\varepsilon_{12}^{(5)} , \hfill \\ 2\varepsilon_{12}^{(2)} = 2\varepsilon_{12}^{(6)} , \hfill \\ 2\varepsilon_{12}^{(3)} = 2\varepsilon_{12}^{(7)} , \hfill \\ 2\varepsilon_{12}^{(4)} = 2\varepsilon_{12}^{(8)} . \hfill \\ \end{aligned}$$
(44)

The micromechanical relations related to the homogenized stresses are given as:

$$\overline{{\sigma_{11} }} = \frac{{V^{(1)} \sigma_{11}^{(1)} + V^{(3)} \sigma_{11}^{(3)} + V^{(5)} \sigma_{11}^{(5)} + V^{(7)} \sigma_{11}^{(7)} }}{{V^{(1)} + V^{(3)} + V^{(5)} + V^{(7)} }} = \frac{{V^{(2)} \sigma_{11}^{(2)} + V^{(4)} \sigma_{11}^{(4)} + V^{(6)} \sigma_{11}^{(6)} + V^{(8)} \sigma_{11}^{(8)} }}{{V^{(2)} + V^{(4)} + V^{(6)} + V^{(8)} }},$$
(45)
$$\overline{{\sigma_{22} }} = \frac{{V^{(1)} \sigma_{22}^{(1)} + V^{(2)} \sigma_{22}^{(2)} + V^{(5)} \sigma_{22}^{(5)} + V^{(6)} \sigma_{22}^{(6)} }}{{V^{(1)} + V^{(2)} + V^{(5)} + V^{(6)} }} = \frac{{V^{(3)} \sigma_{22}^{(3)} + V^{(4)} \sigma_{22}^{(4)} + V^{(7)} \sigma_{22}^{(7)} + V^{(8)} \sigma_{22}^{(8)} }}{{V^{(3)} + V^{(4)} + V^{(7)} + V^{(8)} }},$$
(46)
$$\overline{{\sigma_{33} }} = \frac{{V^{(1)} \sigma_{33}^{(1)} + V^{(2)} \sigma_{33}^{(2)} + V^{(3)} \sigma_{33}^{(3)} + V^{(4)} \sigma_{33}^{(4)} }}{{V^{(1)} + V^{(2)} + V^{(3)} + V^{(4)} }} = \frac{{V^{(5)} \sigma_{33}^{(5)} + V^{(6)} \sigma_{33}^{(6)} + V^{(7)} \sigma_{33}^{(7)} + V^{(8)} \sigma_{33}^{(8)} }}{{V^{(5)} + V^{(6)} + V^{(7)} + V^{(8)} }},$$
(47)
$$\overline{{\sigma_{23} }} = \frac{{V^{(1)} \sigma_{23}^{(1)} + V^{(2)} \sigma_{23}^{(2)} }}{{V^{(1)} + V^{(2)} }} = \frac{{V^{(3)} \sigma_{23}^{(3)} + V^{(4)} \sigma_{23}^{(4)} }}{{V^{(3)} + V^{(4)} }} = \frac{{V^{(5)} \sigma_{23}^{(5)} + V^{(6)} \sigma_{23}^{(6)} }}{{V^{(5)} + V^{(6)} }} = \frac{{V^{(7)} \sigma_{23}^{(7)} + V^{(8)} \sigma_{23}^{(8)} }}{{V^{(7)} + V^{(8)} }},$$
(48)
$$\overline{{\sigma_{13} }} = \frac{{V^{(1)} \sigma_{13}^{(1)} + V^{(3)} \sigma_{13}^{(3)} }}{{V^{(1)} + V^{(3)} }} = \frac{{V^{(2)} \sigma_{13}^{(2)} + V^{(4)} \sigma_{13}^{(4)} }}{{V^{(2)} + V^{(4)} }} = \frac{{V^{(5)} \sigma_{13}^{(5)} + V^{(7)} \sigma_{13}^{(7)} }}{{V^{(5)} + V^{(7)} }} = \frac{{V^{(6)} \sigma_{13}^{(6)} + V^{(8)} \sigma_{13}^{(8)} }}{{V^{(6)} + V^{(8)} }},$$
(49)
$$\overline{{\sigma_{12} }} = \frac{{V^{(1)} \sigma_{12}^{(1)} + V^{(5)} \sigma_{12}^{(5)} }}{{V^{(1)} + V^{(5)} }} = \frac{{V^{(2)} \sigma_{12}^{(2)} + V^{(6)} \sigma_{12}^{(6)} }}{{V^{(2)} + V^{(6)} }} = \frac{{V^{(3)} \sigma_{12}^{(3)} + V^{(7)} \sigma_{12}^{(7)} }}{{V^{(3)} + V^{(7)} }} = \frac{{V^{(4)} \sigma_{12}^{(4)} + V^{(8)} \sigma_{12}^{(8)} }}{{V^{(4)} + V^{(8)} }}.$$
(50)

The micromechanical relations related to the homogenized magnetic fields are summarized in the following equations:

$$\overline{{H_{1} }} = \frac{{V^{(1)} H_{1}^{(1)} + V^{(2)} H_{1}^{(2)} }}{{V^{(1)} + V^{(2)} }} = \frac{{V^{(3)} H_{1}^{(3)} + V^{(4)} H_{1}^{(4)} }}{{V^{(3)} + V^{(4)} }} = \frac{{V^{(5)} H_{1}^{(5)} + V^{(6)} H_{1}^{(6)} }}{{V^{(5)} + V^{(6)} }} = \frac{{V^{(7)} H_{1}^{(7)} + V^{(8)} H_{1}^{(8)} }}{{V^{(7)} + V^{(8)} }},$$
(51)
$$\overline{{H_{2} }} = \frac{{V^{(1)} H_{2}^{(1)} + V^{(3)} H_{2}^{(3)} }}{{V^{(1)} + V^{(3)} }} = \frac{{V^{(2)} H_{2}^{(2)} + V^{(4)} H_{2}^{(4)} }}{{V^{(2)} + V^{(4)} }} = \frac{{V^{(5)} H_{2}^{(5)} + V^{(7)} H_{2}^{(7)} }}{{V^{(5)} + V^{(7)} }} = \frac{{V^{(6)} H_{2}^{(6)} + V^{(8)} H_{2}^{(8)} }}{{V^{(6)} + V^{(8)} }},$$
(52)
$$\overline{{H_{3} }} = \frac{{V^{(1)} H_{3}^{(1)} + V^{(5)} H_{3}^{(5)} }}{{V^{(1)} + V^{(5)} }} = \frac{{V^{(2)} H_{3}^{(2)} + V^{(6)} H_{3}^{(6)} }}{{V^{(2)} + V^{(6)} }} = \frac{{V^{(3)} H_{3}^{(3)} + V^{(7)} H_{3}^{(7)} }}{{V^{(3)} + V^{(7)} }} = \frac{{V^{(4)} H_{3}^{(4)} + V^{(8)} H_{3}^{(8)} }}{{V^{(4)} + V^{(8)} }}.$$
(53)

The micromechanical relations for the magnetic fluxes among subcells are read as:

$$\begin{aligned} B_{1}^{(1)} = B_{1}^{(2)} , \hfill \\ B_{1}^{(3)} = B_{1}^{(4)} , \hfill \\ B_{1}^{(5)} = B_{1}^{(6)} , \hfill \\ B_{1}^{(7)} = B_{1}^{(8)} , \hfill \\ \end{aligned}$$
(54)
$$\begin{aligned} B_{2}^{(1)} = B_{2}^{(3)} , \hfill \\ B_{2}^{(2)} = B_{2}^{(4)} , \hfill \\ B_{2}^{(5)} = B_{2}^{(7)} , \hfill \\ B_{2}^{(6)} = B_{2}^{(8)} , \hfill \\ \end{aligned}$$
(55)
$$\begin{aligned} B_{3}^{(1)} = B_{3}^{(5)} , \hfill \\ B_{3}^{(2)} = B_{3}^{(6)} , \hfill \\ B_{3}^{(3)} = B_{3}^{(7)} , \hfill \\ B_{3}^{(4)} = B_{3}^{(8)} . \hfill \\ \end{aligned}$$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, KJ., Lin, Ch. Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites. Acta Mech 232, 983–1003 (2021). https://doi.org/10.1007/s00707-020-02880-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02880-8

Navigation