Skip to main content
Log in

A non-classical model for circular cylindrical thin shells incorporating microstructure and surface energy effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A non-classical model for circular cylindrical thin shells is developed by using a modified couple stress theory and a surface elasticity theory. The equations of motion and boundary conditions are simultaneously obtained by a variational formulation based on Hamilton’s principle, which provides a unified treatment of the microstructure and surface energy effects. The new non-classical shell model contains one material length scale parameter to capture the microstructure effect and three surface elastic constants to describe the surface energy effect. The current model includes the shell models considering the microstructure effect only or the surface energy effect alone as special cases. Also, the newly developed shell model reduces to the classical circular cylindrical Love–Kirchhoff thin shell model when both the microstructure and surface energy effects are suppressed. In addition, it recovers the non-classical model for Kirchhoff plates incorporating the microstructure and surface energy effects when the shell radius tends to infinity. To illustrate the new model, the static bending and free vibration problems of a simply supported closed circular cylindrical shell and of an open circular cylindrical shell with free edge boundary conditions are analytically solved by directly applying the model. For the static bending problem in each case, the numerical results show that the shell deflection predicted by the current model is smaller than that predicted by the classical model, and the difference is significant when the shell is very thin but diminishes as the shell thickness increases. For the free vibration problem in each case, it is found that the natural frequency predicted by the new model is higher than that predicted by its classical counterpart, and the difference is large only for very thin shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49, 1294–1301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45(3), 331–342 (2010)

    Article  Google Scholar 

  3. Chen, W.Q., Wu, B., Zhang, C.L., Zhang, Ch.: On wave propagation in anisotropic elastic cylinders at nanoscale: surface elasticity and its effect. Acta Mech. 225, 2743–2760 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chung, H.: Free vibration analysis of circular cylindrical shells. J. Sound Vib. 74, 331–350 (1981)

    Article  MATH  Google Scholar 

  5. Enakoutsa, K.: Micromorphic elasticity for an axisymetrically loaded cylindrical thick-walled structure under plane strain conditions. Int. J. Theor. Appl. Multiscale Mech. 3(2), 127–144 (2018)

    Article  Google Scholar 

  6. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  7. Gad, A.I., Gao, X.-L.: Extended Hill’s lemma for non-Cauchy continua based on a modified couple stress theory. Acta Mech. 231, 977–997 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, X.-L.: An exact elasto-plastic solution for a closed-end thick-walled cylinder of elastic linear-hardening material with large strains. Int. J. Press. Vessel. Pip. 56, 331–350 (1993)

    Article  Google Scholar 

  9. Gao, X.-L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226, 457–474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, X.-L., Huang, J.X., Reddy, J.N.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224, 2699–2718 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, X.-L., Ma, H.M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–797 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, X.-L., Mahmoud, F.F.: A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects. Z. Angew. Math. Phys. 65, 393–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, X.-L., Mall, S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–874 (2001)

    Article  MATH  Google Scholar 

  14. Gao, X.-L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)

    Article  MATH  Google Scholar 

  15. Gao, X.-L., Park, S.K., Ma, H.M.: Analytical solution for a pressurized thick-walled spherical shell based on a simplified strain gradient elasticity theory. Math. Mech. Solids 14, 747–758 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, X.-L., Zhang, G.Y.: A microstructure- and surface energy-dependent third-order shear deformation beam model. Z. Angew. Math. Phys. 66, 1871–1894 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, X.-L., Zhang, G.Y.: A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects. Contin. Mech. Thermodyn. 28, 195–213 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghorbani, K., Mohammadi, K., Rajabpour, A., Ghadiri, M.: Surface and size-dependent effects on the free vibration analysis of cylindrical shell based on Gurtin–Murdoch and nonlocal strain gradient theories. J. Phys. Chem. Solids 129, 140–150 (2019)

    Article  Google Scholar 

  19. Green, A.E., Zerna, W.: Theoretical Elasticity, 2nd edn. Oxford University Press, Oxford, England (1968)

    MATH  Google Scholar 

  20. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  22. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73, 235409-1–6 (2006)

  23. Khademolhosseini, F., Rajapakse, R.K.N.D., Nojeh, A.: Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Comput. Mater. Sci. 48, 736–742 (2010)

    Article  Google Scholar 

  24. Koga, T.: Effects of boundary conditions on the free vibrations of circular cylindrical shells. AIAA J. 26, 1387–1394 (1988)

    Article  MATH  Google Scholar 

  25. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  26. Leissa, A.W.: Vibration of Shells, NASA SP-288. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC (1973)

    Google Scholar 

  27. Lim, C.W., He, L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)

    Article  MATH  Google Scholar 

  28. Littlefield, A., Hyland, E., Andalora, A., Klein, N., Langone, R., Becker, R.: Carbon fiber/thermoplastic overwrapped gun tube. ASME J. Press. Vessel. Tech. 128, 257–262 (2006)

    Article  Google Scholar 

  29. Liu, C., Rajapakse, R.K.N.D.: Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans. Nanotech. 9, 422–431 (2010)

    Article  Google Scholar 

  30. Lu, L., Zhu, L., Guo, X., Zhao, J., Liu, G.: A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Appl. Math. Mech. 40, 1695–1722 (2019)

    Article  MATH  Google Scholar 

  31. Ma, H.M., Gao, X.-L., Reddy, J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  32. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  33. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  34. Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  35. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  36. Papargyri-Beskou, S., Beskos, D.E.: Stability analysis of gradient elastic circular cylindrical thin shells. Int. J. Eng. Sci. 47, 1379–1385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Papargyri-Beskou, S., Tsinopoulos, S.V.: Lamé’s strain potential method for plane gradient elasticity problems. Arch. Appl. Mech. 85, 1399–1419 (2015)

    Article  MATH  Google Scholar 

  38. Papargyri-Beskou, S., Tsinopoulos, S.V., Beskos, D.E.: Wave propagation in and free vibrations of gradient elastic circular cylindrical shells. Acta Mech. 223, 1789–1807 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Park, S.K., Gao, X.-L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  40. Park, S.K., Gao, X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59, 904–917 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, Hoboken, New Jersey (2002)

    Google Scholar 

  42. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, Boca Raton, Florida (2007)

    Google Scholar 

  43. Simkins, T.E.: Amplification of flexural waves in gun tubes. J. Sound Vib. 172, 145–154 (1994)

    Article  MATH  Google Scholar 

  44. Steigmann, D.J.: Finite Elasticity Theory. Oxford University Press, Oxford, England (2017)

    Book  MATH  Google Scholar 

  45. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Lond. A 453, 853–877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. Lond. A 455, 437–474 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  48. Wang, W., Qatu, M.S., Yarahmadian, S.: Accuracy of shell and solid elements in vibration analyses of thin- and thick-walled isotropic cylinders. Int. J. Veh Noise Vib. 8(3), 221–236 (2012)

    Article  Google Scholar 

  49. Xing, Y., Liu, B., Xu, T.: Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions. Int. J. Mech. Sci. 75, 178–188 (2013)

    Article  Google Scholar 

  50. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  51. Yu, S.D., Cleghorn, W.L., Fenton, R.G.: On the accurate analysis of free vibration of open circular cylindrical shells. J. Sound Vib. 188, 315–336 (1995)

    Article  MATH  Google Scholar 

  52. Zeighampour, H., Beni, Y.T.: Cylindrical thin-shell model based on modified strain gradient theory. Int. J. Eng. Sci. 78, 27–47 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, G.Y., Gao, X.-L., Wang, J.Z.: A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech. 226, 4073–4085 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, L., Xiang, Y.: Vibration of open circular cylindrical shells with intermediate ring supports. Int. J. Solids Struct. 43, 3705–3722 (2006)

    Article  MATH  Google Scholar 

  55. Zhang, Y., Zhuo, L.J., Zhao, H.S.: Determining the effects of surface elasticity and surface stress by measuring the shifts of resonant frequencies. Proc. R. Soc. A 469, 20130449-1–14 (2013)

  56. Zhou, S.-S., Gao, X.-L.: Solutions of half-space and half-plane contact problems based on surface elasticity. Z. Angew. Math. Phys. 64, 145–166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhou, X., Wang, L., Qin, P.: Free vibration of micro- and nano-shells based on modified couple stress theory. J. Comput. Theor. Nanosci. 9, 814–818 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

GYZ gratefully acknowledges the support by the National Natural Science Foundation of China [Grant # 12002086] and the Fundamental Research Funds for the Central Universities [Grant # 2242020R10027]. The authors would like to thank Professor George Weng and one anonymous reviewer for their encouragement and helpful comments on an earlier version of the paper. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Army.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-L. Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G.Y., Gao, XL. & Littlefield, A.G. A non-classical model for circular cylindrical thin shells incorporating microstructure and surface energy effects. Acta Mech 232, 2225–2248 (2021). https://doi.org/10.1007/s00707-020-02873-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02873-7

Navigation