Skip to main content

Doppler effect described by the solutions of the Cattaneo telegraph equation

Abstract

The Cattaneo telegraph equation for temperature with moving time-harmonic source is studied on the line and the half-line domain. The Laplace and Fourier transforms are used. Expressions which show the wave fronts and elucidate the Doppler effect are obtained. Several particular cases of the considered problem including the heat conduction equation and the wave equation are investigated. The quasi-steady-state solutions are also examined for the case of non-moving time-harmonic source and time-harmonic boundary condition for temperature.

Introduction

The classical parabolic diffusion equation and hyperbolic wave equation have their own characteristic features. For example, dissipation and infinite velocity of the disturbance propagation are inherent to the diffusion equation, while wave fronts, finite speeds of propagation and the Doppler effect [1,2,3] are peculiar to the solutions of the wave equation.

The time-fractional diffusion-wave equation (see [4,5,6] and the references therein)

$$\begin{aligned} \frac{\partial ^{\alpha } T}{\partial t^{\alpha } } = a \Delta T \, , \qquad 0 < \alpha \le 2, \end{aligned}$$
(1)

with the Caputo time-fractional derivative describes different important physical phenomena in bodies with complex internal structure, and interpolates between the diffusion equation when \(\alpha = 1\) and the wave equation when \(\alpha = 2\). Overall, Eq. (1) exhibits inherent features of both types of equations [6,7,8].

The term “diffusion-wave” is also used in another context. Ångström [9] was the first to investigate the standard parabolic diffusion equation (heat conduction equation) under time-harmonic (wave) impact. This pioneering study had aroused considerable interest of researchers and was even translated into English [10]. To describe this type of physical phenomenon the term “oscillatory diffusion” is used, in parallel with the term “diffusion-wave” . An extensive review of literature on this subject can be found in [11,12,13].

There are two possibilities to introduce oscillations into the parabolic diffusion equation. The first one consists in adding the harmonic source term [14, 15]; the second one involves time-harmonic boundary conditions [16, 17]. Often, in previous studies, the quasi-steady-state oscillations were investigated when the solution was represented as a product of a function of the spatial coordinates and time-harmonic term \(\hbox {e}^{i \omega t}\) with the angular frequency \(\omega \).

In 1948 Cattaneo [18] proposed the evolution equation for the heat flux

$$\begin{aligned} \mathbf{q} + \tau _{0} \frac{\partial \mathbf{q}}{\partial t} = - k \, \hbox {grad}\, T, \end{aligned}$$
(2)

where \(\tau _{0}\) is a constant relaxation time (see also [19,20,21,22,23,24] and references therein). In combination with the law of conservation of energy, the constitutive equation (2) leads to the hyperbolic Cattaneo telegraph equation for temperature

$$\begin{aligned} \frac{\partial T}{\partial t} + \tau _{0} \, \frac{\partial ^{2} T}{\partial t^{2} } = a \Delta \, T . \end{aligned}$$
(3)

The heat waves as solutions of the telegraph equation are also called the “second sound” [20, 25, 26].

We would like to mention very interesting unified approach based on random walks proposed by Takayasu [27]. For the inertial random walk in which the mean-free-path is finite, the probability \(\rho \left( x,t \right) \) that the particle exists at a point \(\left( x,t \right) \) obeys the telegraph equation. When the mean-free-path becomes infinite, the probability \(\rho \left( x,t \right) \) satisfies the wave equation; when the mean-free-path equals zero, the standard diffusion equation is obtained.

In this paper, we study the Cattaneo telegraph equation for temperature with moving time-harmonic source on a line and on a half-line domain. Expressions which show the wave fronts and elucidate the Doppler effect are obtained. Several particular cases of the considered problem including the heat conduction equation and the wave equation are investigated. The quasi-steady-state solutions are also considered for the case of non-moving time-harmonic source and time-harmonic boundary condition for temperature. The paper develops the results of previous authors’ investigations [22, 28,29,30,31].

Telegraph equation on a real line with moving time-harmonic source

Consider the telegraph equation

$$\begin{aligned} \displaystyle \frac{\partial T}{\partial t} + \tau _{0}\, \frac{\partial ^{2} T}{\partial t^{2} } = a \frac{\partial ^{2} T}{\partial x^{2}} + Q_{0}\, \delta (x - vt)\, \hbox {e}^{i \omega t} \, , \qquad - \infty< x < \infty , \end{aligned}$$
(4)

under zero initial conditions

$$\begin{aligned} t= & {} 0: \quad T(x,t) = 0, \end{aligned}$$
(5)
$$\begin{aligned} t= & {} 0: \quad \displaystyle \frac{\partial T (x,t)}{\partial t} = 0, \end{aligned}$$
(6)

where \(\delta (x)\) is the Dirac delta function, v denotes the velocity of the moving source, \(\omega \) is the angular frequency.

The Laplace transform with respect to time t and the exponential Fourier transform with respect to the spatial coordinate x result in

$$\begin{aligned} \widetilde{T} ^{*} (\xi , s) = \frac{Q_{0}}{\sqrt{2 \pi }}\, \, \frac{1}{s - i (\omega + v \xi )}\, \, \frac{1}{a \xi ^{2} + s + \tau _{0} \, s^{2}} . \end{aligned}$$
(7)

Here, the asterisk denotes the Laplace transform; s is the transform variable; the tilde marks the Fourier transform; \(\xi \) is the transform variable.

Equation (7) can be rewritten as

$$\begin{aligned} \widetilde{T} ^{*} (\xi , s) = \frac{Q_{0}}{\sqrt{2 \pi }(- i v a)}\, \, \frac{\displaystyle \xi - i \left( \frac{s-i \omega }{v}\right) }{\displaystyle \xi ^{2} + \left( \frac{s-i \omega }{v}\right) ^{2}}\, \, \frac{1}{\displaystyle \xi ^{2} + \frac{1}{c^{2}} \left( s^{2} +\frac{s}{ \tau _{0}}\right) } , \end{aligned}$$
(8)

where for the sake of convenience and in relation to the wave equation,

$$\begin{aligned} c = \sqrt{\frac{a}{\tau _{0}}} \end{aligned}$$
(9)

denotes the velocity of the heat wave.

The expression (8) for \(\widetilde{T} ^{*} (\xi , s)\) can be decomposed into partial fractions, and the inverse Fourier transform gives

$$\begin{aligned} T ^{*} (x , s)= & {} \frac{Q_{0}}{2a \left( 1- \gamma ^{2} \right) }\, B( s) \Bigg \{ \left[ \frac{c\left( s- i \omega \right) }{\sqrt{s^{2} + s/\tau _{0}}} + v\, \hbox {sign}\, x \right] \exp \left( - \frac{\vert x \vert }{c} \, \sqrt{s^{2}+\frac{s}{\tau _{0}}} \right) \nonumber \\&-\, v \left( 1+ \hbox {sign}\, x \right) \exp \left[ - \frac{\vert x \vert }{v} \left( s - i \omega \right) \right] \Bigg \} , \end{aligned}$$
(10)

where the coefficient \(B\left( s\right) \) is written as

$$\begin{aligned} \displaystyle B\left( s \right) = \frac{1}{\displaystyle s^{2} - \frac{1}{1- \gamma ^{2}} \left( \frac{\gamma ^{2}}{\tau _{0}} + 2i \omega \right) s - \frac{\omega ^{2}}{1 - \gamma ^{2}}} , \end{aligned}$$
(11)

the parameter \(\gamma \) denotes the ratio of the source velocity v and the wave velocity c:

$$\begin{aligned} \gamma = \frac{v}{c}, \end{aligned}$$
(12)

and the integrals (69) and (70) from Appendix A have been used.

Taking into account the convolution theorem, the attenuation theorem [32] and the equations for the inverse Laplace transform (77)–(81) from Appendix B, we get the solution

$$\begin{aligned} T(x,t)= & {} \frac{Q_{0}c}{2a\left( 1 - \gamma ^{2} \right) \beta }\, \exp \left( \frac{i \omega t}{1 - v^{2}/c^{2}} \right) \Bigg \{ \left( 1+ \gamma \, \hbox {sign}\, x \right) \sinh \left[ \beta \left( t- \frac{\vert x \vert }{c} \right) \right] \nonumber \\&\quad \times \exp \left[ \frac{\gamma ^{2}t -(1+2i \omega \tau _{0} )\vert x \vert /c}{2\tau _{0}(1 - \gamma ^{2} )} \right] H \left( t - \frac{\vert x \vert }{c} \right) \nonumber \\&\quad - \gamma \left( 1 + \hbox {sign}\, x \right) \sinh \left[ \beta \left( t- \frac{\vert x \vert }{v} \right) \right] \nonumber \\&\quad \times \exp \left[ \gamma ^{2}\, \frac{t -(1+2i \omega \tau _{0} )\vert x \vert /v}{2\tau _{0}(1 - \gamma ^{2} )}\right] H \left( t - \frac{\vert x \vert }{v} \right) \nonumber \\&\quad + \int _{\small {\frac{\vert x \vert }{c}}}^{\, t} \exp \left[ \frac{\gamma ^{2}t -(1+2i \omega \tau _{0} )y}{2\tau _{0}(1 - \gamma ^{2} ) }\right] \sinh \left[ \beta \left( t - y \right) \right] \nonumber \\&\quad \times \Bigg [ \frac{1}{2\tau _{0}} \left( y +\gamma \, \hbox {sign}\, x \, \frac{\vert x \vert }{c} \right) \frac{1}{\sqrt{y^{2}-\vert x \vert ^{2}/c^{2}}} \, I_{1}\left( \frac{1}{2\tau _{0}} \sqrt{y^{2} -\frac{\vert x \vert ^{2}}{c^{2}}} \right) \nonumber \\&\quad - \left( \frac{1}{2\tau _{0}} +i\omega \right) I_{0}\left( \frac{1}{2\tau _{0}} \sqrt{y^{2} -\frac{\vert x \vert ^{2}}{c^{2}}} \right) \Bigg ] \hbox {d}y \, H \left( t - \frac{\vert x \vert }{c} \right) \Bigg \}. \end{aligned}$$
(13)

Here

$$\begin{aligned} \beta = \sqrt{\frac{1}{4\left( 1- \gamma ^{2}\right) ^{2}} \left( \frac{\gamma ^{2}}{\tau _{0}}+2i\omega \right) ^{2} + \frac{\omega ^{2}}{1- \gamma ^{2}} } \, , \end{aligned}$$
(14)

and H(x) is the Heaviside step function.

In the solution (13), the coefficient

$$\begin{aligned} \exp \left( \frac{i \omega t}{1 - v^{2}/c^{2}} \right) \end{aligned}$$
(15)

demonstrates the Doppler effect, and the Heaviside step function \( H \left( t - \frac{\vert x \vert }{c} \right) \) describes two wave fronts at the points \(x = \pm ct\).

Now, we consider two particular cases of the Cattaneo telegraph equation (4). For the standard heat conduction equation with the moving time-harmonic source term

$$\begin{aligned} \displaystyle \frac{\partial T}{\partial t} = a \frac{\partial ^{2} T}{\partial x^{2}} + Q_{0}\, \delta (x - vt)\, \hbox {e}^{i \omega t} \, , \qquad - \infty< x < \infty , \end{aligned}$$
(16)

under zero initial condition (5), the integral transform technique allows us to obtain the corresponding expression for the sought-for temperature in the transform domain

$$\begin{aligned} \widetilde{T} ^{*} (\xi , s) = \frac{Q_{0}}{\sqrt{2 \pi }}\, \, \frac{1}{s - i (\omega + v \xi )}\, \, \frac{1}{s + a \xi ^{2} } \end{aligned}$$
(17)

and the solution

$$\begin{aligned} T(x,t) = \frac{Q_{0}}{2 \sqrt{\pi a}}\, \int _{0}^{t} \hbox {e}^{i \omega (t-u)}\, \frac{1}{\sqrt{u}} \, \exp \left\{ - \frac{ \left[ x - v(t-u)\right] ^{2}}{4au} \right\} \, \hbox {d}u . \end{aligned}$$
(18)

Here the integral (72) from Appendix A has been taken into account.

In the case of the wave equation with the moving time-harmonic source term

$$\begin{aligned} \displaystyle \frac{\partial ^{2} T}{\partial t ^{2}} = c^{2} \frac{\partial ^{2} T}{\partial x^{2}} + Q_{0}\, \delta (x - vt)\, \hbox {e}^{i \omega t} \, , \qquad - \infty< x < \infty , \end{aligned}$$
(19)

under zero initial conditions (5) and (6), the solution reads

$$\begin{aligned} T \left( x,t \right)= & {} \frac{Q_{0}}{2 v\omega } \, \bigg \{ \left( 1 + \gamma \, \hbox {sign} \, x \right) \exp \left[ \frac{i \omega }{1 - \gamma ^{2}} \left( t -\frac{\vert x \vert }{c} \right) \right] \nonumber \\&\quad \times \sin \left[ \frac{\gamma \omega }{1 - \gamma ^{2}} \left( t - \frac{\vert x \vert }{c} \right) \right] H \left( t - \frac{\vert x \vert }{c} \right) \nonumber \\&\quad - \gamma \left( 1 + \hbox {sign}\, x \right) \exp \left[ \frac{ i \omega }{1 - \gamma ^{2}} \left( t- \gamma ^{2}\frac{\vert x \vert }{v} \right) \right] \nonumber \\&\quad \times \sin \left[ \frac{\gamma \omega }{1 - \gamma ^{2}} \left( t - \frac{\vert x \vert }{v} \right) \right] H \left( t - \frac{\vert x \vert }{v} \right) \nonumber \\&\quad - i\omega \int _{\small {\frac{\vert x \vert }{c}}}^{\, t} \exp \left[ \frac{i \omega (t- u)}{1 - \gamma ^{2}} \right] \sin \left[ \frac{\gamma \omega \left( t - u \right) }{1- \gamma ^{2}} \right] \hbox {d}u \ H \left( t - \frac{\vert x \vert }{c} \right) \bigg \} . \end{aligned}$$
(20)

The real part of the solution (20) takes the following form:

$$\begin{aligned} \mathfrak {R}e \, T(x,t) = \left\{ \begin{array}{ll} 0, &{} \quad - \infty< x< - ct , \\ \displaystyle \frac{Q_{0}}{2c\, \omega }\, \sin \left( \frac{c }{c+v}\, \omega t + \frac{\omega x}{c+v} \right) , &{} \quad - ct< x< vt, \\ \displaystyle \frac{Q_{0}}{2c \, \omega }\, \sin \left( \frac{c }{c-v}\, \omega t - \frac{\omega x}{c-v} \right) , &{} \quad vt< x< ct, \\ 0 , &{} \quad ct< x < \infty . \end{array} \right. \end{aligned}$$
(21)

From the expression (21), it is evident that there are two wave fronts at \(x= - ct\) and at \(x= ct\), and the obtained solution describes the Doppler effect: at one side

$$\begin{aligned} \omega _{1}=\frac{c}{c+v}\, \omega \, , \end{aligned}$$
(22)

at the other side

$$\begin{aligned} \omega _{2}=\frac{c}{c-v}\, \omega \, . \end{aligned}$$
(23)

In what follows, we will also use an equivalent form of the solution to the problem (4)–(6) which is obtained by changing the order of inverse integral transforms applied to Eq. (7): first we invert the Laplace transform with respect to time and then the Fourier transform.

Fig. 1
figure 1

Solution to the telegraph Eq. (4) with moving time-harmonic source (\(\bar{t} = 1\), \(\bar{\tau }_{0} = 0.1\), \(\bar{\omega } =\pi /4\))

Then we get

$$\begin{aligned} T(x,t)= & {} \frac{Q_{0}t}{\pi \tau _{0}c} \int _{0}^{1} \hbox {e}^{i \omega t (1-u)}\, \exp \left( - \frac{ut}{2\tau _{0}}\right) \hbox {d}u \nonumber \\&\times \Bigg \langle \int _{0}^{1} \frac{1}{\sqrt{1-\xi ^{2}}} \, \sinh \left( \frac{ut}{2\tau _{0}} \sqrt{1- \xi ^{2}} \right) \cos \left\{ \left[ x -vt \left( 1-u \right) \right] \frac{\xi }{2\tau _{0}c}\right\} \hbox {d}\xi \nonumber \\&+ \! \int _{1}^{\infty } \!\! \frac{1}{\sqrt{\xi ^{2}-1}} \, \sin \left( \frac{ut}{2\tau _{0}} \sqrt{\xi ^{2}-1} \right) \cos \left\{ \left[ x -vt \left( 1-u \right) \right] \frac{\xi }{2\tau _{0}c}\right\} \hbox {d}\xi \Bigg \rangle . \end{aligned}$$
(24)

Equation (24) is simpler than Eq. (13) and more amenable to numerical computations, but does not point clearly to the distinguishing features of the solution—the wave fronts at the points \(x= - ct\) and at \(x= ct\) and the Doppler effect.

The solution to the problem (4)–(6) for the Cattaneo telegraph equation with a non-moving time-harmonic source

$$\begin{aligned} \displaystyle \frac{\partial T}{\partial t} + \tau _{0}\, \frac{\partial ^{2} T}{\partial t^{2} }= & {} a \frac{\partial ^{2} T}{\partial x^{2}} + Q_{0}\, \delta (x)\, \hbox {e}^{i \omega t} \, , \qquad \quad - \infty< x < \infty , \end{aligned}$$
(25)
$$\begin{aligned} t= & {} 0: \ T(x,t) = 0, \end{aligned}$$
(26)
$$\begin{aligned} t= & {} 0: \displaystyle \ \ \ \frac{\partial T (x,t)}{\partial t} = 0, \end{aligned}$$
(27)

can be obtained as a particular case of the general solution (13) under the condition \(v \rightarrow 0\) and has the following form:

$$\begin{aligned} T(x,t) = \left\{ \begin{array}{ll} \displaystyle \frac{Q_{0}}{2 \sqrt{a \tau _{0}}}\, \int _{\textstyle \frac{\vert x \vert }{c}}^{ \, t} \, \hbox {e}^{i \omega (t - y)} \, \hbox {e}^ {- {y}/(2 \tau _{0})} \, \displaystyle I_{0} \left( \frac{1}{2\tau _{0}} \sqrt{y ^{2} - \frac{x^{2} }{c^{2}}} \right) \hbox {d}y \, , &{} \displaystyle \vert x \vert < c t, \\ 0 \, , &{} \displaystyle \vert x \vert > c t . \end{array} \right. \end{aligned}$$
(28)

The real part of the solution (24) is presented in Fig. 1 for various values of the velocity v. In numerical computations, we have used the non-dimensional quantities marked by a bar.

Let L be some characteristic length. In this case, we have

$$\begin{aligned} \displaystyle \bar{T} = \frac{a}{Q_{0}L}\, T \, , \quad \ \ \bar{x} = \frac{x}{L} \, , \quad \ \ \bar{t} = \frac{a}{L^{2}}\, t \, , \quad \ \ \bar{\tau _{0}} = \frac{a}{L^{2}}\, \tau _{0} \, , \quad \ \ \bar{\omega } = \frac{L^{2}}{a}\, \omega , \quad \ \ \bar{v}=\frac{v}{c}. \end{aligned}$$
(29)

The bullet points in Fig. 1 indicate the wave fronts at \(x = - ct\) and \(x=ct\).

Equation (25) allows considering the quasi-steady-state solution corresponding to the assumption that the temperature is represented as a product of a function of the spatial coordinate \(U\left( x \right) \) and time-harmonic term:

$$\begin{aligned} T\left( x,t \right) = U\left( x \right) \, \hbox {e}^{i \omega t}. \end{aligned}$$
(30)

For the function \(U\left( x \right) \) we have the ordinary differential equation

$$\begin{aligned} \left( i \omega - \tau _{0} \omega ^{2} \right) U(x)= a \frac{\hbox {d} ^{2} U}{\hbox {d} x^{2}} + Q_{0}\, \delta (x) , \end{aligned}$$
(31)

and the exponential Fourier transform gives in the transform domain

$$\begin{aligned} \widetilde{U}(\xi ) =\frac{Q_{0}}{\sqrt{2 \pi }}\, \frac{1}{a\xi ^{2} +\left( i\omega - \tau _{0} \omega ^{2} \right) }. \end{aligned}$$
(32)

Taking into account Eq. (69) from Appendix A, after inverting the transform we obtain the quasi-steady-state solution

$$\begin{aligned} \displaystyle T(x,t) = \frac{Q_{0}}{2\sqrt{a} \sqrt{ i\omega - \tau _{0} \omega ^{2} }} \, \exp \left( i \omega t - \frac{\vert x \vert }{\sqrt{a}}\, \sqrt{ i\omega - \tau _{0} \omega ^{2} } \right) . \end{aligned}$$
(33)

For \(\tau _{0}= 0\), the solution (33) coincides with that obtained by Nowacki [14, 15].

The real part of the solution (33) can be written as follows:

$$\begin{aligned} \mathfrak {R}e \, T(x,t)= & {} \frac{Q_{0}}{2\sqrt{a \omega } \root 4 \of {1 + \tau _{0} ^{2} \, \omega ^{2}}} \exp \bigg \{ - \frac{\vert x \vert \sqrt{\omega }}{\sqrt{a}} \, \root 4 \of {1 + \tau _{0 }^{2} \, \omega ^{2}} \nonumber \\&\times \cos \left[ \frac{\pi }{4}+ \frac{1}{2} \, \hbox {arctan} \left( \tau _{0}\, \omega \right) \right] \bigg \} \cos \bigg \{ \omega t - \frac{\pi }{4} - \frac{1}{2} \, \hbox {arctan} \left( \tau _{0} \, \omega \right) \nonumber \\&- \frac{\vert x \vert \sqrt{\omega }}{\sqrt{a}}\, \root 4 \of {1 + \tau _{0 }^{2} \, \omega ^{2}} \, \sin \left[ \frac{\pi }{4}+ \frac{1}{2} \, \hbox {arctan} \left( \tau _{0}\, \omega \right) \right] \bigg \} . \end{aligned}$$
(34)
Fig. 2
figure 2

The quasi-steady-state solution for the telegraph equation on a real line with the time-harmonic source. Dependence of temperature on distance: a\(\bar{t}=0.5\), \( \bar{\tau }_{0}=0.1\); b\(\bar{t}=1\), \( \bar{\tau }_{0}=0.1\); c\(\bar{t}=0.5\), \( \bar{\tau }_{0}=1\); d\(\bar{t}=1\), \( \bar{\tau }_{0}=1\)

The results of numerical calculations according to the quasi-steady-state solution (34) for the non-moving time-harmonic source are presented in Fig. 2, whereas Fig. 3 shows the dependence of temperature on time for different types of solution. The bullet point in Fig. 3 indicates time when the wave front arrives at the point \(\bar{x} = 4\).

Fig. 3
figure 3

Dependence of temperature on time (\(\bar{\tau }_{0} = 0.1\), \(\bar{x} = 4\), \(\bar{\omega } = \pi /4\)). The black line represents the real part of the solution (24); the blue line corresponds to the quasi-steady-state solution (34); the red line shows the real part of the solution (28)

Telegraph equation on a half-line

Time-harmonic source

First, we consider the Cattaneo telegraph equation with the moving time-harmonic source in the half-infinite domain:

$$\begin{aligned} \displaystyle \frac{\partial T}{\partial t} + \tau _{0}\, \frac{\partial ^{2} T}{\partial t^{2} } = a \frac{\partial ^{2} T}{\partial x^{2}} + Q_{0}\, \delta (x - vt)\, \hbox {e}^{i \omega t} \, , \qquad 0< x < \infty , \end{aligned}$$
(35)

under zero initial conditions

$$\begin{aligned}&t=0: \quad T(x,t) = 0, \end{aligned}$$
(36)
$$\begin{aligned}&t=0: \quad \displaystyle \frac{\partial T (x,t)}{\partial t} = 0, \end{aligned}$$
(37)

and zero boundary condition for temperature

$$\begin{aligned} x = 0: \quad T(x,t) = 0 . \end{aligned}$$
(38)

The Laplace transform with respect to time t and the Fourier sine transform with respect to the spatial coordinate x give the expression for temperature in the transform domain:

$$\begin{aligned} \widetilde{T} ^{*} (\xi , s) = \frac{Q_{0}v \xi }{(s - i \omega )^{2} + v^{2} \xi ^{2}}\, \, \frac{1}{a \xi ^{2} + s + \tau _{0} \, s^{2}} , \end{aligned}$$
(39)

where Eq. (75) from Appendix A has been used.

The corresponding counterparts of the solutions (13) and (24) for the telegraph equation on the real line with the moving source term read

$$\begin{aligned} T(x,t)= & {} \frac{Q_{0}v}{a\left( 1 - \gamma ^{2} \right) \beta }\, \exp \left( \frac{i \omega t}{1 - v^{2}/c^{2}} \right) \nonumber \\&\times \Bigg \{ \exp \left[ \frac{\gamma ^{2}t -(1+2i \omega \tau _{0} ) x /c}{2\tau _{0}(1 - \gamma ^{2} )} \right] \sinh \left[ \beta \left( t- \frac{ x }{c} \right) \right] H \left( t - \frac{ x }{c} \right) \nonumber \\&- \exp \left[ \gamma ^{2}\, \frac{t -(1+2i \omega \tau _{0} ) x /v}{2\tau _{0}(1 - \gamma ^{2} )}\right] \sinh \left[ \beta \left( t- \frac{ x }{v} \right) \right] H \left( t - \frac{ x }{v} \right) \nonumber \\&+\, \frac{x}{2\tau _{0}c} \int _{\small {\frac{ x }{c}}}^{\, t}\ \exp \left[ \frac{\gamma ^{2}t -(1+2i \omega \tau _{0} )y}{2\tau _{0}(1 - \gamma ^{2} ) }\right] \nonumber \\&\times \, \!\! \frac{1}{\sqrt{y^{2}- x ^{2}/c^{2}}} \, I_{1}\left( \frac{1}{2\tau _{0}} \sqrt{y^{2} -\frac{ x ^{2}}{c^{2}}} \right) \sinh \left[ \beta \left( t - y \right) \right] \hbox {d}y \ H \left( t - \frac{ x}{c} \right) \!\! \Bigg \} \end{aligned}$$
(40)

and

$$\begin{aligned} T(x,t)= & {} \frac{2Q_{0}t}{\pi \tau _{0}c} \int _{0}^{1} \hbox {e}^{i \omega t (1-u)}\, \exp \left( - \frac{ut}{2\tau _{0}}\right) \hbox {d}u \nonumber \\&\times \Bigg \{ \int _{0}^{1} \frac{1}{\sqrt{1-\xi ^{2}}} \, \sinh \left( \frac{ut}{2\tau _{0}} \sqrt{1- \xi ^{2}} \right) \sin \left[ \frac{\gamma t (1-u) \xi }{2\tau _{0}} \right] \sin \left( \frac{x\xi }{2\tau _{0}c}\right) \hbox {d}\xi \nonumber \\&+ \! \int _{1}^{\infty } \!\!\! \frac{1}{\sqrt{\xi ^{2}-1}} \, \sin \left( \frac{ut}{2\tau _{0}} \sqrt{\xi ^{2}-1} \right) \sin \left[ \frac{\gamma t (1-u) \xi }{2\tau _{0}} \right] \sin \left( \frac{x\xi }{2\tau _{0}c}\right) \hbox {d}\xi \! \Bigg \} . \end{aligned}$$
(41)

Here we have used the necessary integrals from Appendix A and formulae for the inverse Laplace transform given in Appendix B.

For completeness, we also present two particular cases of the considered problem. In the case of the classical heat conduction equation, the expression for temperature reads

$$\begin{aligned} T(x,t)= & {} \frac{Q_{0}}{2 \sqrt{\pi a}}\, \int _{0}^{t} \hbox {e}^{i \omega (t-u)}\, \frac{1}{\sqrt{u}} \nonumber \\&\times \Bigg \langle \exp \left\{ - \frac{ \left[ x - v(t-u)\right] ^{2}}{4au} \right\} - \exp \left\{ - \frac{ \left[ x + v(t-u)\right] ^{2}}{4au} \right\} \Bigg \rangle \, \hbox {d}u, \end{aligned}$$
(42)

whereas for the wave equation we have

$$\begin{aligned} T \left( x,t \right)= & {} \frac{Q_{0}}{c\omega } \bigg \{ \exp \left[ \frac{i \omega }{1 - \gamma ^{2}} \left( t - \frac{ x }{c} \right) \right] \sin \left[ \frac{\gamma \omega }{1 - \gamma ^{2}} \left( t - \frac{ x }{c} \right) \right] H \left( t - \frac{ x }{c} \right) \nonumber \\&- \exp \left[ \frac{i \omega }{1 - \gamma ^{2}} \left( t - \gamma ^{2}\frac{ x }{v} \right) \right] \sin \left[ \frac{\gamma \omega }{1 - \gamma ^{2}} \left( t - \frac{ x }{v} \right) \right] H \left( t - \frac{ x }{v} \right) \bigg \} . \end{aligned}$$
(43)

The real part of the solution (43) takes the form

$$\begin{aligned} \mathfrak {R}e \, T(x,t) = \left\{ \begin{array}{l} \displaystyle \frac{Q_{0}}{c\, \omega }\, \cos \left( \frac{c}{c+v}\omega t \right) \sin \left( \frac{\omega x}{c+v} \right) , \qquad \ \, 0 \le x< vt, \\ \displaystyle \frac{Q_{0}}{2c \, \omega }\bigg [ \sin \left( \frac{c }{c-v}\, \omega t - \frac{\omega x}{c-v} \right) - \sin \left( \frac{c }{c+v}\, \omega t - \frac{\omega x}{c+v} \right) \bigg ], \\ \displaystyle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ vt< x< ct, \\ 0 , \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \ ct< x < \infty . \end{array} \right. \end{aligned}$$
(44)

It is interesting to compare the solutions (20) and (43) (the solutions (21) and (44), respectively) with the solution of the similar problem for the wave equation on a half-line domain under zero Neumann boundary condition when instead of the Fourier exponential transform and sine transform, the Fourier cosine transform is used:

$$\begin{aligned} T \left( x,t \right)= & {} \frac{Q_{0}}{\omega v} \bigg \{ \exp \left[ \frac{i \omega }{1 - \gamma ^{2}} \left( t - \frac{ x }{c} \right) \right] \sin \left[ \frac{\gamma \omega }{1 - \gamma ^{2}} \left( t - \frac{ x }{c} \right) \right] H \left( t - \frac{ x }{c} \right) \nonumber \\&- \gamma \exp \left[ \frac{i \omega }{1 - \gamma ^{2}} \left( t - \gamma ^{2}\frac{ x }{v} \right) \right] \sin \left[ \frac{\gamma \omega }{1 - \gamma ^{2}} \left( t - \frac{ x }{v} \right) \right] H \left( t - \frac{ x }{v} \right) \nonumber \\&- i \omega \int _{\small {\frac{ x }{c}}}^{\, t} \exp \left[ \frac{i \omega \left( t-u \right) }{1 - \gamma ^{2}}\right] \sin \left[ \frac{\gamma \omega \left( t - u \right) }{1- \gamma ^{2}} \right] \hbox {d}u \, H \left( t - \frac{ x }{c} \right) \bigg \} . \end{aligned}$$
(45)

The real part of the solution (45) takes the form

$$\begin{aligned} \mathfrak {R}e \, T(x,t) = \left\{ \begin{array}{l} \displaystyle \frac{Q_{0}}{c\, \omega }\, \sin \left( \frac{c}{c+v}\omega t \right) \cos \left( \frac{\omega x}{c+v} \right) , \qquad \ \, 0 \le x< vt, \\ \displaystyle \frac{Q_{0}}{2c \, \omega }\bigg [ \sin \left( \frac{c }{c-v}\, \omega t - \frac{\omega x}{c-v} \right) + \sin \left( \frac{c }{c+v}\, \omega t - \frac{\omega x}{c+v} \right) \bigg ], \\ \displaystyle \qquad \qquad \ \qquad \qquad \qquad \qquad \qquad \qquad vt< x< ct, \\ 0 , \qquad \qquad \quad \ \, \qquad \qquad \qquad \qquad \qquad ct< x < \infty . \end{array} \right. \end{aligned}$$
(46)

Figure 4 shows the dependence of the real part of the solution (41) on distance for different values of the velocity v, whereas the dependence of temperature on time is presented in Fig. 5. The bullet point indicates the wave front at \(x=ct\).

The time-harmonic Dirichlet boundary condition

Here we consider the following initial-boundary-value problem:

$$\begin{aligned}&\frac{\partial T}{\partial t} + \tau _{0}\, \frac{\partial ^{2} T}{\partial t^{2}} = a \frac{\partial ^{2} T}{\partial x^{2}} \, , \qquad 0< x < \infty , \end{aligned}$$
(47)
$$\begin{aligned}&x= 0: \qquad T(x,t) = T_{0}\, \hbox {e}^{i \omega t}, \end{aligned}$$
(48)
$$\begin{aligned}&t=0: \ T(x,t) = 0, \end{aligned}$$
(49)
$$\begin{aligned}&t=0: \displaystyle \ \, \frac{\partial T (x,t)}{\partial t} = 0. \end{aligned}$$
(50)
Fig. 4
figure 4

Solution to the telegraph equation with moving time-harmonic source on the half-line domain under zero temperature boundary condition (\(\bar{t} = 1\), \(\bar{\tau }_{0} = 0.1\), \(\bar{\omega } =\pi /4\))

Fig. 5
figure 5

The telegraph equation on a half-line with moving source term. Dependence of temperature on time (\(\bar{\tau }_{0} = 0.1\), \(\bar{x} = 4\), \(\bar{\omega } = \pi /4\))

The Laplace transform with respect to time and the Fourier sine transform with respect to the spatial coordinate result in the solution in the transform domain

$$\begin{aligned} \widetilde{T} ^{*} (\xi , s) = a T_{0} \, \xi \, \frac{1}{a \xi ^{2} + s + \tau _{0}\, s^{2}} \, \, \frac{1}{s - i \omega }. \end{aligned}$$
(51)

The inverse Fourier sine transform gives

$$\begin{aligned} T ^{*} (x, s) = T_{0}\ \frac{1}{s - i \omega } \ \exp \left( - \frac{ x }{c}\, \sqrt{s^{2} + \frac{ s}{ \tau _{0}}} \right) . \end{aligned}$$
(52)

Taking into account the convolution theorem, the attenuation theorem [32] and the formulae for the inverse Laplace transform (see Appendix B), we obtain the solution

$$\begin{aligned} T(x,t) = \left\{ \begin{array}{l} \displaystyle T_{0} \, \exp \left[ i \omega \left( t - \frac{ x }{c } \right) \right] \exp \left( - \frac{x}{2c \tau _{0}}\right) + \, T_{0} \, \frac{x}{2 c \tau _{0}}\, \int _{\textstyle \frac{ x }{c }}^{t} \, \hbox {e}^{i \omega (t - u)} \, \hbox {e}^ {- {u}/(2 \tau _{0})} \\ \displaystyle \times \, \frac{1}{\sqrt{u^{2}- \displaystyle {\frac{x^{2}}{c^{2}}}}}\, I_{1} \left( \frac{1}{2\tau _{0}} \sqrt{u ^{2} - \frac{x^{2} }{c^{2}}} \right) \hbox {d}u \, , \qquad \qquad \, \, x < c t , \\ 0 \, , \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad x > c t . \end{array} \right. \end{aligned}$$
(53)

For the classical heat conduction equation, we have

$$\begin{aligned} T\left( x, t \right) = \frac{T_{0}x}{2 \sqrt{\pi a}} \int _{0}^{t} \hbox {e}^{i \omega (t-u)}\, \frac{1}{u^{3/2}}\, \exp \left( - \frac{x^{2}}{4au} \right) \hbox {d}u . \end{aligned}$$
(54)

The real part of the integral representation (54) coincides with that given by Carslaw and Jaeger [16] and Morse and Feshbach [17].

In the case of the wave equation, the solution is

$$\begin{aligned} T\left( x, t \right) = T_{0}\, \exp \left[ i\omega \left( t - \frac{x}{c}\right) \right] H \left( t - \frac{x}{c} \right) . \end{aligned}$$
(55)

Dependence of the real part of the solution (53) on distance is shown in Fig. 6. The non-dimensional temperature is introduced as

$$\begin{aligned} \bar{T} = \frac{T}{T_{0}}, \end{aligned}$$
(56)

other non-dimensional quantities are the same as in Eq. (29).

The quasi-steady-state solution

In this case the telegraph equation is investigated without imposing initial conditions, but under the assumption that temperature is represented as the product of a function in spatial variable and time-harmonic term:

$$\begin{aligned}&\frac{\partial T}{\partial t} + \tau _{0}\, \frac{\partial ^{2} T}{\partial t^{2}} = a \frac{\partial ^{2} T}{\partial x^{2}} \, , \qquad 0< x < \infty , \end{aligned}$$
(57)
$$\begin{aligned}&x= 0: \quad T(x,t) = T_{0}\, \hbox {e}^{i \omega t}. \end{aligned}$$
(58)
Fig. 6
figure 6

The telegraph equation on a half-line with the time-harmonic Dirichlet boundary condition. Dependence of temperature on distance (\(\bar{\tau }_{0} = 0.1\), \(\bar{t} = 1\))

Let

$$\begin{aligned} T(x,t) = U(x)\, \hbox {e}^{i \omega t}. \end{aligned}$$
(59)

For the function U(x) we have the equation

$$\begin{aligned} \left( i \omega - \tau _{0} \omega ^{2} \right) U(x)=a \frac{\hbox {d} ^{2} U}{\hbox {d} x^{2}} \end{aligned}$$
(60)

under the boundary condition

$$\begin{aligned} x= 0: \quad U(x) = T_{0}. \end{aligned}$$
(61)

The Fourier sine transform with respect to the spatial coordinate x gives

$$\begin{aligned} \widetilde{U}(\xi ) =a T_{0} \, \frac{\xi }{a\xi ^{2} +\left( i\omega - \tau _{0} \omega ^{2} \right) }, \end{aligned}$$
(62)

and after inverting the transform we obtain the quasi-steady-state solution

$$\begin{aligned} T(x,t) = T_{0} \, \exp \left( i \omega t - \frac{ x }{\sqrt{a}}\, \sqrt{ i\omega - \tau _{0} \omega ^{2} } \right) \end{aligned}$$
(63)

and

$$\begin{aligned} \mathfrak {R}e \, T(x,t)= & {} T_{0} \, \exp \bigg \{ - \frac{ x \sqrt{\omega }}{\sqrt{a}} \, \root 4 \of {1 + \tau _{0 }^{2} \, \omega ^{2}} \cos \left[ \frac{\pi }{4}+ \frac{1}{2} \, \hbox {arctan} \left( \tau _{0}\, \omega \right) \right] \bigg \} \nonumber \\&\times \, \cos \bigg \{ \omega t - \frac{ x \sqrt{\omega }}{\sqrt{a}}\, \root 4 \of {1 + \tau _{0 }^{2} \, \omega ^{2}} \sin \left[ \frac{\pi }{4}+ \frac{1}{2} \, \hbox {arctan} \left( \tau _{0}\, \omega \right) \right] \bigg \}. \end{aligned}$$
(64)

The Fourier sine transform with respect to the spatial coordinate x gives

$$\begin{aligned} \widetilde{U}(\xi ) =a T_{0} \, \frac{\xi }{a\xi ^{2} +\left( i\omega - \tau _{0} \omega ^{2} \right) }. \end{aligned}$$
(65)

In particular, the quasi-steady-state solution of the heat conduction equation reads

$$\begin{aligned} T\left( x, t \right) =T_{0}\, \exp \left( i\omega t - x \sqrt{\frac{i \omega }{a}} \right) , \end{aligned}$$
(66)

whereas the corresponding result for the wave equation is (see Eq. (71) from Appendix A)

$$\begin{aligned} T\left( x, t \right) = T_{0}\, \hbox {e}^{i \omega t}\, \cos \left( \frac{\omega }{c}\, x\right) . \end{aligned}$$
(67)

The results of numerical calculations based on Eq. (64) are presented in Fig. 7. Comparison of the solution with zero initial conditions and the quasi-steady-state solution is shown in Fig. 8.

Concluding remarks

It was shown in [30] that the telegraph equation has two harmonic wave solutions: temporally attenuated and spatially periodic (TASP) and spatially attenuated and temporally periodic (SATP). In the present paper, we have investigated the solutions to the telegraph equation with the time-harmonic source term and with the time-harmonic Dirichlet boundary condition. For moving time-harmonic source, the obtained solutions contain the wave fronts and describe the Doppler effect. Wave solutions of the telegraph equation are dissipative in contrast to solutions of the wave equation. In a graphical representation of the numerical results, we have used different scales due to large differences in wave amplitudes for various values of the non-dimensional parameters.

Fig. 7
figure 7

The quasi-steady-state solution for the telegraph equation on a half-line with the time-harmonic Dirichlet boundary condition. Dependence of temperature on distance: a\(\bar{t}=0.5\), \( \bar{\tau }_{0}=0.1\); b\(\bar{t}=1\), \( \bar{\tau }_{0}=0.1\)

Fig. 8
figure 8

The telegraph equation on a half-line with the time-harmonic Dirichlet boundary condition. Dependence of temperature on time (\(\bar{\omega } = \pi /4\); \(\bar{x} = 4\); \(\bar{\tau }_{0} = 0.1\)). The blue line corresponds to the quasi-steady-state solution (64); the red line shows the real part of the solution (53)

The obtained solutions can be successfully used when the source term or boundary value function f(t) can be expanded into a Fourier series

$$\begin{aligned} f(t) =\sum \limits _{n = - \infty }^{\infty } A_{n}\, \hbox {e}^{in\omega t}. \end{aligned}$$
(68)

In this case the temperature can be represented as a superposition of harmonic terms. Similarly, the Fourier superposition can be carried out by integrating the derived solution with respect to the frequency \(\omega \) (for the heat conduction equation such a possibility was discussed by Nowacki [14, 15] and Morse and Feshbach [17]).

References

  1. Doppler, C.: Ueber das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abhandl. Königl. Böhm. Gesellsch. Wiss. 2, 465–482 (1842)

    MATH  Google Scholar 

  2. Gill, T.P.: The Doppler Effect: An Introduction to the Theory of the Effect. Logos Press, London (1965)

    Google Scholar 

  3. Nolte, D.D.: The fall and rise of the Doppler effect. Phys. Today 73(3), 30–35 (2020)

    Article  Google Scholar 

  4. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23–28 (1996)

    MathSciNet  Article  Google Scholar 

  5. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996)

    MathSciNet  Article  Google Scholar 

  6. Povstenko, Y.: Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Birkhäuser, New York (2015)

    Book  Google Scholar 

  7. Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27(2), 309–321 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Luchko, Y., Mainardi, F., Povstenko, Y.: Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl. 66(5), 774–784 (2013)

    MathSciNet  Article  Google Scholar 

  9. Ångström, A.J.: Neue Methode, das Wärmeleitungsvermögen der Körper zu bestimmen. Ann. Phys. Chem. 114(12), 513–530 (1861)

    Article  Google Scholar 

  10. Ångström, A.J.: New method of determining the thermal conductibility of bodies. Phil. Mag. 25(166), 130–142 (1863)

    Article  Google Scholar 

  11. Mandelis, A.: Diffusion waves and their uses. Phys. Today 53(8), 29–33 (2000)

    Article  Google Scholar 

  12. Mandelis, A.: Diffusion-Wave Fields: Mathematical Methods and Green Functions. Springer, New York (2001)

    Book  Google Scholar 

  13. Vrentas, J.S., Vrentas, C.M.: Diffusion and Mass Transfer. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  14. Nowacki, W.: State of stress in an elastic space due to a source of heat varying harmonically as function of time. Bull. Acad. Polon. Sci. Sér. Sci. Techn. 5(3), 145–154 (1957)

    Google Scholar 

  15. Nowacki, W.: Thermoelasticity, 2nd edn. PWN-Polish Scientfic Publishers, Warsaw and Pergamon Press, Oxford (1986)

    MATH  Google Scholar 

  16. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford (1959)

    MATH  Google Scholar 

  17. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, vol. 1. McFraw-Hill, New York (1953)

    MATH  Google Scholar 

  18. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  19. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Modern Phys. 61(1), 41–73 (1989)

    MathSciNet  Article  Google Scholar 

  20. Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39(3), 355–376 (1986)

    Article  Google Scholar 

  21. Ösişik, M.N., Tzou, D.Y.: On the wave theory of heat conduction. J. Heat Transfer 116(3), 526–535 (1994)

    Article  Google Scholar 

  22. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Prees, Oxford (2009)

    Book  Google Scholar 

  23. Straughan, B.: Heat Waves. Springer, New York (2011)

    Book  Google Scholar 

  24. Weiss, G.H.: Some applications of persistent random walks and the telegrapher’s equation. Physica A 311(3–4), 381–410 (2002)

    MathSciNet  Article  Google Scholar 

  25. Christov, C., Jordan, P.: Heat conduction paradox involving second-sound propagation in moving media. Phys. Rev. Lett. 94(15), 154301 (2005)

    Article  Google Scholar 

  26. Bargmann, S.: Second sound waves in solids. In: Hetnarski, R.B. (ed.) Encyclopedia of Thermal Stresses, pp. 4273–4275. Springer, Dordrecht (2014)

    Chapter  Google Scholar 

  27. Takayasu, H.: Differential fractal dimensions of random walk and its application to physical systems. J. Phys. Soc. Japan 51(9), 3057–3064 (1982)

    MathSciNet  Article  Google Scholar 

  28. Povstenko, Y.: Fractional heat conduction in a space with a source varying harmonically in time and associated thermal stresses. J. Thermal Stresses 39(11), 1442–1450 (2016)

    Article  Google Scholar 

  29. Povstenko, Y., Kyrylych, T.: Time-fractional diffusion with mass absorption under harmonic impact. Fract. Calc. Appl. Anal. 21(1), 118–133 (2018)

    MathSciNet  Article  Google Scholar 

  30. Zhang, D., Ostoja-Starzewski, M.: Telegraph equation: two types of harmonic waves, a discontinuity wave, and a spectral finite element. Acta Mech. 230(5), 1725–1743 (2019)

    MathSciNet  Article  Google Scholar 

  31. Datsko, B., Podlubny, I., Povstenko, Y.: Time-fractional diffusion-wave equation with mass absorption in a sphere under harmonic impact. Mathematics 7(5), 433 (2019)

    Article  Google Scholar 

  32. Doetsch, G.: Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation. Springer, München (1967)

    MATH  Google Scholar 

  33. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Iintegrals, Series, and Products. Academic Press, New York (1980)

    Google Scholar 

  34. Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and Series, Elementary Functions, vol. 1. Gordon and Breach Science Publishers, Amsterdam (1986)

    MATH  Google Scholar 

  35. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Tables of Integral Transforms, vol. 1. McGraw-Hill Book Company, New York (1954)

    MATH  Google Scholar 

Download references

Acknowledgements

MO-S was partially supported by the National Institutes of Health under award number R01EB029766.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuriy Povstenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We present integrals [33, 34] used in the paper:

$$\begin{aligned}&\int _{0}^{\infty } \frac{1}{x^{2}+c^{2}}\, \cos \left( bx \right) \hbox {d}x = \frac{\pi }{2c}\, \hbox {e}^{- \vert b \vert c}, \qquad \mathfrak {R}e\, c > 0. \end{aligned}$$
(69)
$$\begin{aligned}&\int _{0}^{\infty } \frac{x}{x^{2}+c^{2}}\, \sin \left( bx \right) \hbox {d}x = \frac{\pi }{2}\, \hbox {e}^{- \vert b \vert c} \, \hbox {sign}\, b, \qquad \mathfrak {R}e\, c\ge 0. \end{aligned}$$
(70)
$$\begin{aligned}&\int _{0}^{\infty } \frac{x}{x^{2} -c^{2}}\, \sin \left( bx \right) \hbox {d}x = \frac{\pi }{2}\, \cos \left( b c \right) \, \hbox {sign}\, b, \quad \mathfrak {R}e\, c\ge 0. \end{aligned}$$
(71)

The integral (71) is understood as the Cauchy principal value.

$$\begin{aligned}&\int _{0}^{\infty } \hbox {e}^{- c x^{2}} \cos \left( bx \right) \hbox {d}x = \frac{\sqrt{\pi }}{2\sqrt{c}}\, \exp \left( - \frac{b^{2}}{4c} \right) , \quad \ \ \ \, \mathfrak {R}e\, c > 0 . \end{aligned}$$
(72)
$$\begin{aligned}&\int _{0}^{\infty } x\, \hbox {e}^{- c x^{2}} \sin \left( bx \right) \hbox {d}x = \frac{\sqrt{\pi } b}{4c^{3/2}}\, \exp \left( - \frac{b^{2}}{4c} \right) , \quad \ \ \ \, \mathfrak {R}e\, c > 0 . \end{aligned}$$
(73)
$$\begin{aligned}&\int _{0}^{\infty } \frac{\sin \left( cx \right) \cos \left( bx \right) }{x} \, \hbox {d}x = \left\{ \begin{array}{ll} \displaystyle \frac{\pi }{2}, &{} c> b \ge 0,\\ 0, \quad \quad b > c \ge 0. \end{array} \right. \end{aligned}$$
(74)
$$\begin{aligned}&\int _{0}^{\infty } \hbox {e}^{- p x} \sin \left( bx \right) \hbox {d}x = \frac{b}{b^{2}+p^{2}}, \ \ \ \, \mathfrak {R}\hbox {e}\, p > \vert \mathfrak {I}\hbox {m} \, b\vert . \end{aligned}$$
(75)
$$\begin{aligned}&\int _{0}^{\infty } \hbox {e}^{- p x} \cos \left( bx \right) \hbox {d}x = \frac{p}{b^{2}+p^{2}}, \ \ \ \, \mathfrak {R}\hbox {e}\, p > \vert \mathfrak {I}\hbox {m} \, b\vert . \end{aligned}$$
(76)

Appendix B

Equations for the inverse Laplace transforms are taken from [32, 35].

$$\begin{aligned}&\displaystyle {\mathcal {L}}^{-1} \!\!\! \left\{ \frac{1}{\sqrt{s^{2} - c^{2}}} \, \hbox {e}^{- b \, \sqrt{s^{2} - c^{2}}} \right\} = \left\{ \begin{array}{ll} \displaystyle I_{0}\left( c \sqrt{t^{2}-b^{2}} \right) , &{} \qquad \ t> b > 0, \\ 0 , &{} \qquad \ 0< t < b. \end{array} \right. \end{aligned}$$
(77)
$$\begin{aligned}&{\mathcal {L}}^{-1} \left\{ \hbox {e}^{-bs} \right\} = \delta (t - b) , \qquad \qquad \ \, \ b>0 . \end{aligned}$$
(78)
$$\begin{aligned}&{\mathcal {L}}^{-1} \left\{ \frac{1}{s} \, \hbox {e}^{-bs} \right\} = H (t - b) , \quad \quad \ \ \, \ b>0 . \end{aligned}$$
(79)
$$\begin{aligned}&{\mathcal {L}}^{-1} \left\{ \hbox {e}^{- b \, \sqrt{s^{2} - c^{2}}} \right\} = \delta (t-b) + \left\{ \begin{array}{ll} \displaystyle \frac{bc}{\sqrt{t^{2}-b^{2}} }\, I_{1}\left( c \sqrt{t^{2}-b^{2}} \right) , &{} \ \ t> b > 0, \\ 0 , &{} \ \ 0< t < b. \end{array} \right. \end{aligned}$$
(80)
$$\begin{aligned}&{\mathcal {L}}^{-1} \left\{ \frac{s}{\sqrt{s^{2} - c^{2}}} \, \hbox {e}^{- b \, \sqrt{s^{2} - c^{2}}} \right\} = \delta (t-b) + \, \left\{ \begin{array}{ll} \displaystyle \frac{ct}{\sqrt{t^{2}-b^{2}} }\, I_{1}\left( c \sqrt{t^{2}-b^{2}} \right) , &{} \ \ t> b > 0, \\ 0 , &{} \ \ 0< t < b, \end{array} \right. \end{aligned}$$
(81)

where \(I_{n}(z)\) is the modified Bessel function, \(\delta (x)\) is the Dirac delta function, and H(x) is the Heaviside step function.

$$\begin{aligned}&{\mathcal {L}}^{-1} \left\{ \frac{1}{s^{2} - c^{2}} \right\} = \frac{1}{c}\, \sinh \left( ct \right) , \quad \ \mathfrak {R}e\, c > 0. \end{aligned}$$
(82)
$$\begin{aligned}&{\mathcal {L}}^{-1} \left\{ \frac{1}{s^{2} + c^{2}} \right\} = \frac{1}{c}\, \sin \left( ct \right) , \qquad \mathfrak {R}e\, c > 0 . \end{aligned}$$
(83)
$$\begin{aligned}&{\mathcal {L}}^{-1} \left\{ \frac{s}{s^{2} + c^{2}} \right\} = \cos \left( ct \right) , \qquad \ \ \ \mathfrak {R}e\, c > 0 . \end{aligned}$$
(84)
$$\begin{aligned}&{\mathcal {L}}^{-1} \left\{ \hbox {e}^{-b\sqrt{s}} \right\} = \frac{b}{2 \sqrt{\pi } t^{3/2}} \, \exp \left( - \frac{b^{2}}{4t} \right) , \quad \, \ b>0 . \end{aligned}$$
(85)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Povstenko, Y., Ostoja-Starzewski, M. Doppler effect described by the solutions of the Cattaneo telegraph equation. Acta Mech 232, 725–740 (2021). https://doi.org/10.1007/s00707-020-02860-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02860-y