Skip to main content

Advertisement

Log in

Annealing-induced phase transformations and hardness evolution in Al–Cu–Al composites obtained by high-pressure torsion

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Multilayered bulk Al–Cu–Al metal-matrix composite was fabricated by means of high-pressure torsion and subsequent annealing. The resulting composite had a heterogeneous structure consisting of ductile aluminum matrix and hard intermetallic inclusions with a gradient decrease in grain size and layer thickness when moving from the center to the periphery of the sample. Precipitation of \(\hbox {Al}_{2}\hbox {Cu}\) intermetallic phase was revealed at the edge of the sample in the as-deformed state. Post-deformation annealing initiated the emergence of AlCu and \(\hbox {Al}_{\mathrm {4}}\hbox {Cu}_{\mathrm {9}}\) intermetallic precipitates with increased hardness compared to strain-induced \(\hbox {Al}_{\mathrm {2}}\hbox {Cu}\) particles. The growth kinetics of intermetallic compounds was obtained using precise X-ray phase analysis. It was found that the initial growth of intermetallic phases at temperatures 150–210 \(^{\circ }\)C depends on time \(t^{1/2}\), indicating the bulk diffusion-controlled growth. The growth activation energy of Al\(_2\)Cu and AlCu phases was calculated to be 0.48 and 0.33 eV, respectively. The results obtained contribute to an understanding of the kinetics of annealing-induced growth of intermetallic phases and the corresponding evolution of strength characteristics in Al–Cu–Al composites. It was revealed that thermal treatment regimes resulting in enhanced mechanical properties are associated with moderate time and temperature of annealing, which allows avoiding partial dissolution of strengthening phases. The applied approach of phase kinetics analysis can become the basis for the development of new energy-efficient heat treatment modes of in situ Al-based composites allowing to govern their heterogeneity type and tailoring the mechanical properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Han, J.-K., Han, D.K., Liang, G.Y., Jang, J.-I., Langdon, T.G., Kawasaki, M.: Direct bonding of aluminum–copper metals Through high-pressure torsion processing. Adv. Eng. Mater. 20, 1800642 (2018). https://doi.org/10.1002/adem.201800642

    Article  Google Scholar 

  2. Kawasaki, M., Han, J.-K., Lee, D.-H., Jang, J., Langdon, T.G.: Fabrication of nanocomposites through diffusion bonding under high-pressure torsion. J. Mater. Res. 33, 2700–2710 (2018). https://doi.org/10.1557/jmr.2018.205

    Article  Google Scholar 

  3. Oh-ishi, K., Edalati, K., Kim, H.S., Hono, K., Horita, Z.: High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system. Acta Mater. 61, 3482–3489 (2013). https://doi.org/10.1016/j.actamat.2013.02.042

    Article  Google Scholar 

  4. Mishler, M., Ouvarov-Bancalero, V., Chae, S.H., Nguyen, L., Kim, C.-U.: Intermetallic compound growth and stress development in Al–Cu diffusion couple. J. Elect. Mater. 47, 855–865 (2018). https://doi.org/10.1007/s11664-017-5877-y

    Article  Google Scholar 

  5. Rahmatabadi, D., Tayyebi, M., Hashemi, R., Faraji, G.: Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces. Int. J. Miner. Metall. Mater. 25, 564–572 (2018). https://doi.org/10.1007/s12613-018-1603-x

    Article  Google Scholar 

  6. Aikin, R.M.: The mechanical properties of in-situ composites. JOM 49, 35–39 (1997). https://doi.org/10.1007/BF02914400

    Article  Google Scholar 

  7. Bandyopadhyay, N.R., Ghosh, S., Basumallick, A.: New generation metal matrix composites. Mater. Manuf. Process. 22, 679–682 (2007). https://doi.org/10.1080/10426910701384872

    Article  Google Scholar 

  8. Tjong, S.: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng.: R: Rep. 29, 49–113 (2000). https://doi.org/10.1016/S0927-796X(00)00024-3

    Article  Google Scholar 

  9. Das, S., Das, S., Das, K.: Abrasive wear of zircon sand and alumina reinforced Al–4.5 wt% Cu alloy matrix composites—a comparative study. Compos. Sci. Technol. 67, 746–751 (2007). https://doi.org/10.1016/j.compscitech.2006.05.001

    Article  Google Scholar 

  10. Surappa, M.K.: Aluminium matrix composites: challenges and opportunities. Sadhana 28, 319–334 (2003). https://doi.org/10.1007/BF02717141

    Article  Google Scholar 

  11. Bodunrin, M.O., Alaneme, K.K., Chown, L.H.: Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 4, 434–445 (2015). https://doi.org/10.1016/j.jmrt.2015.05.003

    Article  Google Scholar 

  12. Mohapatra, S., Chaubey, A.K., Mishra, D.K., Singh, S.K.: Fabrication of Al–TiC composites by hot consolidation technique: its microstructure and mechanical properties. J. Mater. Res. Technol. 5, 117–122 (2016). https://doi.org/10.1016/j.jmrt.2015.07.001

    Article  Google Scholar 

  13. Bihari, B., Singh, A.K.: An overview on different processing parameters in particulate reinforced metal matrix composite fabricated by stir casting process. Int. J. Eng. Res. Appl. 7, 42–48 (2017). https://doi.org/10.9790/9622-0701034248

    Article  Google Scholar 

  14. Sheibani, S.: In situ fabrication of Al–TiC metal matrix composites by reactive slag process. Mater. Des. 28, 2373–2378 (2007). https://doi.org/10.1016/j.matdes.2006.08.004

    Article  Google Scholar 

  15. Karantzalis, A.E., Wyatt, S., Kennedy, A.R.: The mechanical properties of Al–TiC metal matrix composites fabricated by a flux-casting technique. Mater. Sci. Eng.: A 237, 200–206 (1997). https://doi.org/10.1016/S0921-5093(97)00290-6

    Article  Google Scholar 

  16. Shockley, J.M., Strauss, H.W., Chromik, R.R., Brodusch, N., Gauvin, R., Irissou, E., Legoux, J.-G.: In situ tribometry of cold-sprayed Al–Al\(_2\)O\(_3\) composite coatings. Surf. Coat. Technol. 215, 350–356 (2013). https://doi.org/10.1016/j.surfcoat.2012.04.099

    Article  Google Scholar 

  17. Das, B., Roy, S., Rai, R.N., Saha, S.C.: Development of an in-situ synthesized multi-component reinforced Al–4.5% Cu–TiC metal matrix composite by FAS technique—optimization of process parameters. Eng. Sci. Technol., Int. J. 19, 279–291 (2016). https://doi.org/10.1016/j.jestch.2015.08.002

    Article  Google Scholar 

  18. Zhang, Z., Topping, T., Li, Y., Vogt, R., Zhou, Y., Haines, C., Paras, J., Kapoor, D., Schoenung, J.M., Lavernia, E.J.: Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scr. Mater. 65, 652–655 (2011). https://doi.org/10.1016/j.scriptamat.2011.06.037

    Article  Google Scholar 

  19. Kawasaki, M., Jang, J.: Micro-mechanical response of an Al–Mg hybrid system synthesized by high-pressure torsion. Materials 10, 596 (2017). https://doi.org/10.3390/ma10060596

    Article  Google Scholar 

  20. Korznikova, G., Kabirov, R., Nazarov, K., Khisamov, R., Shayakhmetov, R., Korznikova, E., Khalikova, G., Mulyukov, R.: Influence of constrained high-pressure torsion on microstructure and mechanical properties of an aluminum-based metal matrix composite. JOM (2020). https://doi.org/10.1007/s11837-020-04152-1

    Article  Google Scholar 

  21. Zhang, X., Yu, Y., Liu, B., Zhao, Y., Ren, J., Yan, Y., Cao, R., Chen, J.: In-situ investigation of deformation behavior and fracture mechanism of laminated Al/Ti composites fabricated by hot rolling. J. Alloys Compd. 783, 55–65 (2019). https://doi.org/10.1016/j.jallcom.2018.12.272

    Article  Google Scholar 

  22. Hernández-Escobar, D., Rahman, Z.U., Yilmazer, H., Kawasaki, M., Boehlert, C.J.: Microstructural evolution and intermetallic formation in Zn–Mg hybrids processed by high-pressure torsion. Philos. Maga. 99, 557–584 (2019). https://doi.org/10.1080/14786435.2018.1546962

    Article  Google Scholar 

  23. Ru, Y., Yu, K.Y., Guo, F., Ren, Y., Cui, L.: Temperature-dependent plastic deformation mechanisms of a Cu/steel transforming nanolamellar composite. Mater. Sci. Eng.: A 734, 77–84 (2018). https://doi.org/10.1016/j.msea.2018.07.090

    Article  Google Scholar 

  24. Rogachev, S.O., Nikulin, S.A., Khatkevich, V.M., Sundeev, R.V., Kozlov, D.A.: High-pressure torsion deformation process of bronze/niobium composite. Trans. Nonferrous Metals Soc. China 29, 1689–1695 (2019). https://doi.org/10.1016/S1003-6326(19)65075-2

    Article  Google Scholar 

  25. Korznikova, G., Czeppe, T., Khalikova, G., Gunderov, D., Korznikova, E., Litynska-Dobrzynska, L., Szlezynger, M.: Microstructure and mechanical properties of Cu-graphene composites produced by two high pressure torsion procedures. Mater. Charact. 161, 110122 (2020). https://doi.org/10.1016/j.matchar.2020.110122

    Article  Google Scholar 

  26. Liu, X.J., Ohnuma, I., Kainuma, R., Ishida, K.: Phase equilibria in the Cu-rich portion of the Cu–Al binary system. J. Alloys Compd. 264, 201–208 (1998). https://doi.org/10.1016/S0925-8388(97)00235-1

    Article  Google Scholar 

  27. Zhilyaev, A., Langdon, T.: Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater. Sci. 53, 893–979 (2008). https://doi.org/10.1016/j.pmatsci.2008.03.002

    Article  Google Scholar 

  28. Mulyukov, K.Y., Korznikova, G.F., Nikitin, S.A.: Magnetization of nanocrystalline dysprosium: annealing effects. J. Appl. Phys. 79, 8584–8587 (1996). https://doi.org/10.1063/1.362478

    Article  Google Scholar 

  29. Sapanathan, T., Khoddam, S., Zahiri, S.H., Zarei-Hanzaki, A., Ibrahim, R.: Hybrid metallic composite materials fabricated by sheathed powder compaction. J. Mater. Sci. 51, 3118–3124 (2016). https://doi.org/10.1007/s10853-015-9621-9

    Article  Google Scholar 

  30. Korznikova, G.F., Nazarov, K.S., Khisamov, R.K., Sergeev, S.N., Shayachmetov, R.U., Khalikova, G.R., Baimova, J.A., Glezer, A.M., Mulyukov, R.R.: Intermetallic growth kinetics and microstructure evolution in Al–Cu–Al metal-matrix composite processed by high pressure torsion. Mater. Lett. 253, 412–415 (2019). https://doi.org/10.1016/j.matlet.2019.07.124

    Article  Google Scholar 

  31. Hentzell, H.T.G., Thompson, R.D., Tu, K.N.: Interdiffusion in copper-aluminum thin film bilayers. I. Structure and kinetics of sequential compound formation. J. Appl. Phys. 54, 6923–6928 (1983). https://doi.org/10.1063/1.331999

    Article  Google Scholar 

  32. Chen, C.-Y., Hwang, W.-S.: Effect of annealing on the interfacial structure of aluminum–copper joints. Mater. Trans. 48, 1938–1947 (2007). https://doi.org/10.2320/matertrans.MER2006371

    Article  Google Scholar 

  33. Korznikova, E.A., Mironov, S.Y., Korznikov, A.V., Zhilyaev, A.P., Langdon, T.G.: Microstructural evolution and electro-resistivity in HPT nickel. Mater. Sci. Eng.: A 556, 437–445 (2012). https://doi.org/10.1016/j.msea.2012.07.010

    Article  Google Scholar 

  34. Cahn, R.W., Haasen, P. (eds.): Physical Metallurgy. North-Holland, Amsterdam, New York (1996)

    Google Scholar 

  35. Zhang, J., Wang, B., Chen, G., Wang, R., Miao, C., Zheng, Z., Tang, W.: Formation and growth of Cu–Al IMCs and their effect on electrical property of electroplated Cu/Al laminar composites. Trans. Nonferrous Metals Soc. China 26, 3283–3291 (2016). https://doi.org/10.1016/S1003-6326(16)64462-X

    Article  Google Scholar 

  36. Peterson, N.L., Rothman, S.J.: Impurity diffusion in aluminum. Phys. Rev. B 1, 3264–3273 (1970). https://doi.org/10.1103/PhysRevB.1.3264

    Article  Google Scholar 

  37. Ma, X.L., Huang, C.X., Xu, W.Z., Zhou, H., Wu, X.L., Zhu, Y.T.: Strain hardening and ductility in a coarse-grain/nanostructure laminate material. Scr. Mater. 103, 57–60 (2015). https://doi.org/10.1016/j.scriptamat.2015.03.006

    Article  Google Scholar 

  38. Rashkova, B., Faller, M., Pippan, R., Dehm, G.: Growth mechanism of Al\(_2\)Cu precipitates during in situ TEM heating of a HPT deformed Al–3 wt% Cu alloy. J. Alloys Compd. 600, 43–50 (2014). https://doi.org/10.1016/j.jallcom.2014.02.090

    Article  Google Scholar 

  39. Kabirov, R.R., Nazarov, K.S., Korznikova, G.F., Khisamov, R.K., Sergeyev, S.N., Nagimov, M.I., Mulyukov, R.R.: Mechanical properties of a metal-matrix composite based on copper and aluminum, obtained via shear deformation under pressure. Bull. Russ. Acad. Sci.: Phys. 83, 1265–1269 (2019). https://doi.org/10.3103/S1062873819100101

    Article  Google Scholar 

  40. Wu, X., Zhu, Y.: Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 5, 527–532 (2017). https://doi.org/10.1080/21663831.2017.1343208

    Article  Google Scholar 

Download references

Acknowledgements

The present work was accomplished according to the state assignment of IMSP RAS and supported by the Russian Science Foundation (Grant No. 18-12-00440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Korznikova.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulyukov, R.R., Korznikova, G.F., Nazarov, K.S. et al. Annealing-induced phase transformations and hardness evolution in Al–Cu–Al composites obtained by high-pressure torsion. Acta Mech 232, 1815–1828 (2021). https://doi.org/10.1007/s00707-020-02858-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02858-6

Navigation