Nonlinear thermomechanical buckling of FG-GRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure

Abstract

A new analytical approach to the nonlinear buckling and postbuckling analyses of functionally graded graphene-reinforced composite laminated cylindrical shells stiffened by functionally graded graphene-reinforced composite laminated stiffeners under external pressure taking into account the elastic foundation effect in a uniformly distributed thermal environment is presented in this paper. An improved smeared stiffener technique is developed for anisotropic stiffeners, and a special design for ring and stringer functionally graded graphene-reinforced composite laminated stiffeners is presented and successfully applied in this paper. The governing equations for the cylindrical shells are established by using the Donnell shell theory with the geometrical nonlinearity term in the von Kármán sense with the shell-foundation interaction formulated by the Pasternak elastic foundation model. A three-term solution form is chosen for the deflection, the stress function is introduced, and the Galerkin method is used to establish the nonlinear postbuckling relation. The numerical results validate the effects of the stiffeners, volume fraction of graphene, type of graphene distribution of the shell skin and stiffeners with different geometrical parameters, elastic foundation moduli, and uniformly distributed temperature changes on the nonlinear buckling and postbuckling behaviors of stiffened cylindrical shells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Sofiyev, A.H., Schnack, E.: The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading. Eng. Struct. 26, 1321–1331 (2004)

    Google Scholar 

  2. 2.

    Sofiyev, A.H., Kuruoglu, N.: Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium. Compos. Part B Eng. 45, 1133–1142 (2013)

    Google Scholar 

  3. 3.

    Najafov, A.M., Sofiyev, A.H., Kuruoglu, N.: Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations. Meccanica 48, 829–840 (2013)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Bagherizadeh, E., Kiani, Y., Eslami, M.R.: Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation. Compos. Struct. 93, 3063–3071 (2011)

    Google Scholar 

  5. 5.

    Bagherizadeh, E., Kiani, Y., Eslami, M.R.: Thermal buckling of functionally graded material cylindrical shells on elastic foundation. AIAA J. 50(2), 500–503 (2012)

    Google Scholar 

  6. 6.

    Boroujerdy, M.S., Naj, R., Kiani, Y.: Buckling of heated temperature dependent FGM cylindrical shell surrounded by elastic medium. J. Theor. Appl. Mech. 52(4), 869–881 (2014)

    Google Scholar 

  7. 7.

    Han, Y., Zhu, X., Li, T., Yu, Y., Hu, X.: Free vibration and elastic critical load of functionally graded material thin cylindrical shells under internal pressure. Int. J. Struct. Stab. Dyn. 18, 1850138 (2018)

    MathSciNet  Google Scholar 

  8. 8.

    Wang, Y.Q., Ye, C., Zu, J.W.: Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities. Appl. Math. Mech. 39(11), 1587–1604 (2018)

    MathSciNet  Google Scholar 

  9. 9.

    Javani, M., Kiani, Y., Eslami, M.R.: Nonlinear axisymmetric response of temperature-dependent FGM conical shells under rapid heating. Acta Mech. 230, 3019–3039 (2019)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Xu, K., Zhou, Z., Lu, Q., Sun, J., Jia, Z.: Thermo-mechanical buckling of CFRP cylindrical shells with FGPM coating. Int. J. Struct. Stab. Dyn. 19, 1950016 (2019)

    MathSciNet  Google Scholar 

  11. 11.

    Arazm, M., Eipakchi, H., Ghannad, M.: Vibrational behavior investigation of axially functionally graded cylindrical shells under moving pressure. Acta Mech. 230, 3221–3234 (2019)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Nam, V.H., Phuong, N.T., Minh, K.V., Hieu, P.T.: Nonlinear thermo-mechanical buckling and post-buckling of multilayer FGM cylindrical shell reinforced by spiral stiffeners surrounded by elastic foundation subjected to torsional loads. Eur. J. Mech. - A/Solids 72, 393–406 (2018)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Nam, V.H., Phuong, N.T., Doan, C.V., Trung, N.T.: Nonlinear thermo-mechanical stability analysis of eccentrically spiral stiffened sandwich functionally graded cylindrical shells subjected to external pressure. Int. J. Appl. Mech. 11(05), 1950045 (2019)

    Google Scholar 

  14. 14.

    Nam, V.H., Phuong, N.T., Trung, N.T.: Nonlinear buckling and postbuckling of sandwich FGM cylindrical shells reinforced by spiral stiffeners under torsion loads in thermal environment. Acta Mech. 230, 3183–3204 (2019)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Phuong, N.T., Luan, D.T., Nam, V.H., Hieu, P.T.: Nonlinear approach on torsional buckling and postbuckling of functionally graded cylindrical shells reinforced by orthogonal and spiral stiffeners in thermal environment. Proc. Inst. Mech. Eng. Part C J. Mecha. Eng. Sci. 233(6), 2091–2106 (2019)

    Google Scholar 

  16. 16.

    Phuong, N.T., Nam, V.H., Trung, N.T., Duc, V.M., Phong, P.V.: Nonlinear stability of sandwich functionally graded cylindrical shells with stiffeners under axial compression in thermal environment. Int. J. Struct. Stab. Dyn. 19(07), 1950073 (2019)

    MathSciNet  Google Scholar 

  17. 17.

    Asadi, H., Kiani, Y., Aghdam, M.M., Shakeri, M.: Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy. J. Compos. Mater. 50(2), 243–256 (2016)

    Google Scholar 

  18. 18.

    Fallah, F., Taati, E.: On the nonlinear bending and post-buckling behavior of laminated sandwich cylindrical shells with FG or isogrid lattice cores. Acta Mech. 230, 2145–2169 (2019)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Shen, H.S.: Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part I: axially-loaded shells. Compos. Struct. 93(8), 2096–2108 (2011)

    Google Scholar 

  20. 20.

    Shen, H.S.: Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part II: pressure-loaded shells. Compos. Struct. 93(10), 2496–2503 (2011)

    Google Scholar 

  21. 21.

    Alizada, A.N., Sofiyev, A.H., Kuruoglu, N.: Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load. Acta Mech. 223, 1371–1383 (2012)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Barzoki, A.A.M., Arani, A.G., Kolahchi, R., Mozdianfard, M.R.: Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core. Appl. Math. Model. 36(7), 2983–2995 (2012)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Arani, A.G., Amir, S., Shajari, A.R., Mozdianfard, M.R.: Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory. Compos. Part B Eng. 43(2), 195–203 (2012)

    Google Scholar 

  24. 24.

    Arani, A.G., Kolahchi, R., Maraghi, Z.K.: Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory. Appl. Math. Model. 37(14–15), 7685–7707 (2013)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Arani, A.G., Karimi, M.S., Bidgoli, M.R.: Nonlinear vibration and instability of rotating piezoelectric nanocomposite sandwich cylindrical shells containing axially flowing and rotating fluid-particle mixture. Polym. Compos. 38, E577–E596 (2016)

    Google Scholar 

  26. 26.

    Jam, J.E., Kiani, Y.: Buckling of pressurized functionally graded carbon nanotube reinforced conical shells. Compos. Struct. 125, 586–595 (2015)

    Google Scholar 

  27. 27.

    Mirzaei, M., Kiani, Y.: Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells. Aerosp. Sci. Technol. 47, 42–53 (2015)

    MATH  Google Scholar 

  28. 28.

    Heydarpour, Y., Malekzadeh, P.: Dynamic stability of rotating FG-CNTRC cylindrical shells under combined static and periodic axial loads. Int. J. Struct. Stab. Dyn. 18(12), 1850151 (2018)

    MathSciNet  Google Scholar 

  29. 29.

    Safarpour, H., Mohammadi, K., Ghadiri, M., Barooti, M.M.: Effect of porosity on flexural vibration of CNT-reinforced cylindrical shells in thermal environment using GDQM. Int. J. Struct. Stab. Dyn. 18, 1850123 (2018)

    MathSciNet  Google Scholar 

  30. 30.

    Hajmohammad, M.H., Kolahchi, R., Zarei, M.S., Maleki, M.: Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects. Compos. Struct. 187, 498–508 (2018)

    Google Scholar 

  31. 31.

    Hosseini, H., Kolahchi, R.: Seismic response of functionally graded-carbon nanotubes-reinforced submerged viscoelastic cylindrical shell in hygrothermal environment. Physica E 102, 101–109 (2018)

    Google Scholar 

  32. 32.

    Sofiyev, A.H., Najafov, A.M., Kuruoglu, N.: The effect of non-homogeneity on the non-linear buckling behavior of laminated orthotropic conical shells. Compos. Part B Eng. 43, 1196–1206 (2012)

    Google Scholar 

  33. 33.

    Sofiyev, A.H., Turkaslan, B.E., Bayramov, R.P., Salamci, M.U.: Analytical solution of stability of FG-CNTRC conical shells under external pressures. Thin Wall. Struct. 144, 106338 (2019)

    Google Scholar 

  34. 34.

    Sofiyev, A.H., Tornabene, F., Dimitri, R., Kuruoglu, N.: Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading. Nanomaterials 10(3), 419 (2020)

    Google Scholar 

  35. 35.

    Shen, H.S., Xiang, Y., Lin, F.: Nonlinear bending of functionally graded graphene reinforced composite laminated plates resting on elastic foundations in thermal environments. Compos. Struct. 170, 80–90 (2017)

    Google Scholar 

  36. 36.

    Shen, H.S., Xiang, Y.: Postbuckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compression in thermal environments. Comput. Methods Appl. Mech. Eng. 330, 64–82 (2018)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Shen, H.S., Xiang, Y.: Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments. Thin Wall. Struct. 124, 151–160 (2018)

    Google Scholar 

  38. 38.

    Mirzaei, M., Kiani, Y.: Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation. Compos. Struct. 180, 606–616 (2017)

    Google Scholar 

  39. 39.

    Zeverdejani, M.K., Beni, Y.T., Kiani, Y.: Multi-scale buckling and post-buckling analysis of functionally graded laminated composite plates reinforced by defective graphene sheets. Int. J. Struct. Stab. Dyn. 20(01), 2050001 (2020)

    MathSciNet  Google Scholar 

  40. 40.

    Kiani, Y., Mirzaei, M.: Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements. Compos. Struct. 186, 114–122 (2018)

    Google Scholar 

  41. 41.

    Kiani, Y.: Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation. Comput. Methods Appl. Mech. Eng. 332, 86–101 (2018)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Kiani, Y.: NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates. Thin Wall. Struct. 125, 211–219 (2018)

    Google Scholar 

  43. 43.

    Kiani, Y.: Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment. Compos. Part B Eng. 156, 128–137 (2019)

    Google Scholar 

  44. 44.

    Ly, L.N., Phuong, N.T., Nam, V.H., Trung, N.T., Duc, V.M.: An analytical approach of nonlinear thermo-mechanical buckling of functionally graded graphene-reinforced composite laminated cylindrical shells under compressive axial load surrounded by elastic foundation. J. Appl. Comput. Mech. 6(2), 357–372 (2020)

    Google Scholar 

  45. 45.

    Phuong, N.T., Nam, V.H., Trung, N.T., Duc, V.M., Loi, N.V., Thinh, N.D., Tu, P.T.: Thermomechanical postbuckling of functionally graded graphene-reinforced composite laminated toroidal shell segments surrounded by Pasternak’s elastic foundation. J. Thermo-Plast. Compos. Mater. (2019). https://doi.org/10.1177/0892705719870593

    Article  Google Scholar 

  46. 46.

    Baruch, M., Singer, J.: Effect of eccentricity of stiffeners on the general instability of stiffened cylindrical shells under hydro-static pressure. J. Mech. Eng. Sci. 5(1), 23–27 (1963)

    Google Scholar 

  47. 47.

    Reddy, J.N., Starnes, J.H.: General buckling of stiffened circular cylindrical shells according to a layerwise theory. Compos. Struct. 49, 605–616 (1993)

    MATH  Google Scholar 

  48. 48.

    Shen, H.S.: Postbuckling analysis of imperfect stiffened laminated cylindrical shells under combined external pressure and thermal loading. Int. J. Mech. Sci. 40(4), 339–355 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vu Hoai Nam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phuong, N.T., Trung, NT., Van Doan, C. et al. Nonlinear thermomechanical buckling of FG-GRC laminated cylindrical shells stiffened by FG-GRC stiffeners subjected to external pressure. Acta Mech 231, 5125–5144 (2020). https://doi.org/10.1007/s00707-020-02813-5

Download citation