Skip to main content
Log in

The stability of composite conical shells covered by carbon nanotube-reinforced coatings under external pressures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, the stability of sandwich conical shells covered by functionally graded and uniform distributed carbon nanotube-reinforced composite coatings under external pressures is carried out. The mechanical properties of the carbon nanotube and matrix are assumed to be graded through the thickness of the coatings via three types of grading rule. The basic relationships and stability equations of sandwich conical shells reinforced by carbon nanotubes are obtained employing the modified Donnell-type shell theory and generalized first-order shear deformation theory. The Galerkin procedure is employed to define expressions for the external buckling pressures. For the accuracy of the proposed formulation, the results are compared with the results that are published in the literature. It follows a systematic study aimed at checking the sensitivity of the structural response to the type of pattern and the volume fraction of carbon nanotubes in the composite coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Plantema, F.J.: Sandwich Construction. Wiley, New York (1966)

    Google Scholar 

  2. Takeda, N., Minakuchi, S., Okabe, Y.: Smart composite sandwich structures for future aerospace application-damage detection and suppression: a review. J. Solid Mech. Mater. Eng. 1, 3–17 (2007)

    Article  Google Scholar 

  3. Iijima, S.: Synthesis of carbon nanotubes. Nature 354, 56–58 (1994)

    Article  Google Scholar 

  4. Liu, L., Barber, A.H., Nuriel, S., Wagner, H.D.: Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl alcohol) nanocomposites. Adv. Funct. Mater. 15(6), 975–980 (2005)

    Article  Google Scholar 

  5. Brian, P.: Grady Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications, p. 352. Wiley, Canada (2011)

    Google Scholar 

  6. Zaminpayma, E., Mirabbaszadeh, K.: Interaction between single-walled carbon nanotubes and polymers: a molecular dynamics simulation study with reactive force field. Comput. Mater. Sci. 58, 7–11 (2012)

    Article  Google Scholar 

  7. Alizada, A.N., Sofiyev, A.H., Kuruoglu, N.: The stress analysis of the substrate coated by nanomaterials with vacancies subjected to the uniform extension load. Acta Mech. 223, 1371–1383 (2012)

    Article  MathSciNet  Google Scholar 

  8. Shen, H.S.: Nonlinear bending of functionally graded carbon nano tube reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Article  Google Scholar 

  9. Kwon, H., Bradbury, C.R., Leparoux, M.: Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite. Adv. Eng. Mater. 13, 325–329 (2011)

    Article  Google Scholar 

  10. Jam, J.E., Kiani, Y.: Buckling of pressurized functionally graded carbon nanotube reinforced conical shells. Compos. Struct. 125, 586–595 (2015)

    Article  Google Scholar 

  11. Ansari, R., Torabi, J., Shojaei, M.F., Hasrati, E.: Buckling analysis of axially-loaded functionally graded carbon nanotube-reinforced composite conical panels using a novel numerical variational method. Compos. Struct. 157, 398–411 (2016)

    Article  Google Scholar 

  12. Mehri, M., Asadi, H., Wang, Q.: Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method. Comput. Methods Appl. Mech. Eng. 303, 75–100 (2016)

    Article  MathSciNet  Google Scholar 

  13. Duc, N.D., Hong, C.P.H., Tuan, N.D., Tran, P., Thanh, N.V.: Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations. Thin-Walled Struct. 115, 300–310 (2017)

    Article  Google Scholar 

  14. Kiani, Y.: Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment. Compos. B Eng. 156, 128–137 (2019)

    Article  Google Scholar 

  15. Sofiyev, A.H., Türkaslan-Esencan, B., Bayramov, R.P., Salamci, M.U.: Analytical solution of stability of FG-CNTRC conical shells under external pressures. Thin-Walled Struct. 144, 1–12 (2019). Article 106338

    Article  Google Scholar 

  16. Wang, Z.X., Shen, H.S.: Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos. B Eng. 43(2), 411–421 (2012)

    Article  Google Scholar 

  17. Shen, H.S., Zhu, Z.H.: Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations. Eur. J. Mech. A Solids 35, 10–21 (2012)

    Article  MathSciNet  Google Scholar 

  18. Shen, H.S., Xiang, Y.: Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment. Compos. B Eng. 52, 311–322 (2013)

    Article  Google Scholar 

  19. Natarajan, S., Haboussi, M., Manickam, G.: Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite face sheets. Compos. Struct. 113, 197–207 (2014)

    Article  Google Scholar 

  20. Sankar, A., Natarajan, S., Ganapathi, M.: Dynamic instability analysis of sandwich plates with CNT reinforced face sheets. Compos. Struct. 146, 187–200 (2016)

    Article  Google Scholar 

  21. Wu, H., Kitipornchai, S., Yang, J.: Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. Int. J. Struct. Stabil. Dyn. 15(7), 1540011 (2015)

    Article  MathSciNet  Google Scholar 

  22. Mirzaei, M., Kiani, Y.: Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. Acta Mech. 227, 1869–1884 (2016)

    Article  MathSciNet  Google Scholar 

  23. Shen, H.S., Wang, H., Yang, D.Q.: Vibration of thermally postbuckled sandwich plates with nanotube reinforced composite face sheets resting on elastic foundations. Int. J. Mech. Sci. 124, 253–262 (2017)

    Article  Google Scholar 

  24. Sankar, A., Natarajan, S., Merzouki, T., Ganapathi, M.: Nonlinear dynamic thermal buckling of sandwich spherical and conical shells with CNT reinforced face sheets. Int. J. Struct. Stab. Dyn. 17, 1–10 (2017). Article 1750100

    Article  Google Scholar 

  25. Mehar, K., Panda, S.K., Devarajan, Y., Choubey, G.: Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading. Compos. Struct. 216, 406–414 (2019)

    Article  Google Scholar 

  26. Mehar, K., Panda, S.K.: Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification. Compos. B Eng. 167, 317–328 (2019)

    Article  Google Scholar 

  27. Di Sciuva, M., Sorrenti, M.: Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended refined Zigzag theory. Compos. Struct. 227, 111324 (2019)

    Article  Google Scholar 

  28. Ambartsumian, S.A.: Theory of Anisotropic Shells. State Publishing House for Physical and Mathematical Literature, Moscow (1961)

    MATH  Google Scholar 

  29. Volmir, A.S.: Stability of Elastic Systems. Nauka: Moscow. English Translation: Foreign Tech. Division, Air Force Systems Command. Wright-Patterson Air Force Base, Ohio, AD628508 (1967)

  30. Eslami, M.R.: Buckling and Postbuckling of Beams, Plates and Shells. Springer, Switzerland (2018)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Sofiyev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The operators \(D_{lq} \,(l,q=1,2,3,4)\) are described as:

$$\begin{aligned} D_{11}&=r_{12} h\frac{\partial ^{4}}{\partial \xi ^{4}}+\frac{\left( {r_{11} -r_{31} } \right) h}{\xi ^{2}}\frac{\partial ^{4}}{\partial \xi ^{2}\partial y^{2}}+\frac{\left( {3r_{31} -3r_{11} -r_{21} } \right) h}{\xi ^{3}}\frac{\partial ^{3}}{\partial \xi \partial y^{2}}+\frac{\left( {r_{11} -r_{22} +r_{12} } \right) h}{\xi }\frac{\partial ^{3}}{\partial \xi ^{3}}, \nonumber \\&\quad +\frac{\left( {r_{22} -r_{11} -r_{12} -r_{21} } \right) h}{\xi ^{2}}\frac{\partial ^{2}}{\partial \xi ^{2}}+\frac{3\left( {r_{21} +r_{11} -r_{31} } \right) h}{\xi ^{4}}\frac{\partial ^{2}}{\partial y^{2}}+\frac{2r_{21} h}{\xi ^{3}}\frac{\partial }{\partial \xi }, \nonumber \\ D_{12}&=-r_{13} \frac{\partial ^{4}}{\partial \xi ^{4}}-\frac{r_{14} +r_{32} }{\xi ^{2}}\frac{\partial ^{4}}{\partial \xi ^{2}\partial y^{2}}+\frac{3r_{14} +3r_{32} +r_{24} }{\xi ^{3}}\frac{\partial ^{3}}{\partial \xi \partial y^{2}}-\frac{r_{13} +r_{14} -r_{23} }{\xi }\frac{\partial ^{3}}{\partial \xi ^{3}}, \nonumber \\&\quad +\frac{r_{13} +r_{14} -r_{23} +r_{24} }{\xi ^{2}}\frac{\partial ^{2}}{\partial \xi ^{2}}-\frac{3(r_{14} +r_{24} +r_{32} )}{\xi ^{4}}\frac{\partial ^{2}}{\partial y^{2}}-\frac{2r_{24} }{\xi ^{3}}\frac{\partial }{\partial \xi }, \nonumber \\ D_{13}&=r_{15} \frac{\partial ^{3}}{\partial \xi ^{3}}+\frac{r_{15} -r_{25} }{\xi }\frac{\partial ^{2}}{\partial \xi ^{2}}+\frac{r_{35} }{\xi ^{2}}\frac{\partial ^{3}}{\partial \xi \partial y^{2}}-U_{3} \frac{\partial }{\partial \xi }-\frac{r_{15} -r_{25} }{\xi ^{2}}\frac{\partial }{\partial \xi }-\frac{r_{35} }{\xi ^{3}}\frac{\partial ^{2}}{\partial y^{2}}, \nonumber \\ D_{14}&=\frac{r_{38} +r_{18} }{\xi }\frac{\partial ^{3}}{\partial \xi ^{2}\partial y}-\frac{r_{28} +r_{18} +r_{38} }{\xi ^{2}}\frac{\partial ^{2}}{\partial \xi \partial y}+\frac{2r_{28} }{\xi ^{3}}\frac{\partial }{\partial y}, \nonumber \\ D_{21}&=\frac{r_{21} h}{\xi ^{3}}\frac{\partial ^{4}}{\partial y^{4}}+\frac{\left( {r_{22} -r_{31} } \right) h}{\xi }\frac{\partial ^{4}}{\partial \xi ^{2}\partial y^{2}}+\frac{r_{21} h}{\xi ^{2}}\frac{\partial ^{3}}{\partial \xi \partial y^{2}}, \nonumber \\ D_{22}&=-\frac{r_{32} +r_{23} }{\xi }\frac{\partial ^{4}}{\partial \xi ^{2}\partial y^{2}}-\frac{r_{24} }{\xi ^{3}}\frac{\partial ^{4}}{\partial y^{4}}-\frac{r_{24} }{\xi ^{2}}\frac{\partial ^{3}}{\partial \xi \partial y^{2}}, \nonumber \\ D_{23}&=\frac{r_{25} +r_{35} }{\xi }\frac{\partial ^{3}}{\partial \xi \partial y^{2}}+\frac{r_{35} }{\xi ^{2}}\frac{\partial ^{2}}{\partial y^{2}},\,\,D_{24} =r_{38} \frac{\partial ^{3}}{\partial \xi ^{2}\partial y}+\frac{2r_{38} }{\xi }\frac{\partial ^{2}}{\partial \xi \partial y}+\frac{r_{28} }{\xi ^{2}}\frac{\partial ^{3}}{\partial y^{3}}-U_{2} \frac{\partial }{\partial y}, \nonumber \\ D_{31}&=\frac{l_{11} h}{\xi ^{4}}\frac{\partial ^{4}}{\partial y^{4}}+\frac{\left( {2l_{31} +l_{21} +l_{12} } \right) h}{\xi ^{2}}\frac{\partial ^{4}}{\partial \xi ^{2}\partial y^{2}}-\frac{2(l_{31} +l_{21} )h}{\xi ^{3}}\frac{\partial ^{3}}{\partial \xi \partial y^{2}}, \nonumber \\&\quad +\frac{2(l_{31} +l_{21} +l_{11} )h}{\xi ^{4}}\frac{\partial ^{2}}{\partial y^{2}}+\frac{l_{11} h}{\xi ^{3}}\frac{\partial }{\partial \xi }-\frac{l_{11} h}{\xi ^{2}}\frac{\partial ^{2}}{\partial \xi ^{2}}+\frac{\left( {l_{21} +2l_{22} -l_{12} } \right) h}{\xi }\frac{\partial ^{3}}{\partial \xi ^{3}}+l_{22} h\frac{\partial ^{4}}{\partial \xi ^{4}}\,,\,\, \nonumber \\ D_{32}&=-\frac{l_{14} }{\xi ^{4}}\frac{\partial ^{4}}{\partial y^{4}}+\frac{2l_{32} -l_{13} -l_{24} }{\xi ^{2}}\frac{\partial ^{4}}{\partial \xi ^{2}\partial y^{2}}+\frac{2(l_{24} -l_{32} )}{\xi ^{3}}\frac{\partial ^{3}}{\partial \xi \partial y^{2}}+\frac{2(l_{32} -l_{24} -l_{14} )}{\xi ^{4}}\frac{\partial ^{2}}{\partial y^{2}}, \nonumber \\&\quad -\frac{l_{14} }{\xi ^{3}}\frac{\partial }{\partial \xi }+\left( {\frac{l_{14} }{\xi ^{2}}+\frac{\cot \beta }{\xi }} \right) \frac{\partial ^{2}}{\partial \xi ^{2}}+\frac{l_{13} -l_{24} -2l_{23} }{\xi }\frac{\partial ^{3}}{\partial \xi ^{3}}-l_{23} \frac{\partial ^{4}}{\partial \xi ^{4}}, \nonumber \\ D_{33}&=\frac{2l_{35} +l_{15} }{\xi ^{2}}\frac{\partial ^{3}}{\partial \xi \partial y^{2}}+l_{25} \frac{\partial ^{3}}{\partial \xi { }^{3}}+\frac{2l_{25} -l_{15} }{\xi }\frac{\partial ^{2}}{\partial \xi ^{2}}, \nonumber \\ D_{34}&=\frac{l_{18} }{\xi ^{3}}\frac{\partial ^{3}}{\partial y^{3}}+\frac{2l_{38} +l_{28} }{\xi }\frac{\partial ^{3}}{\partial \xi ^{2}\partial y}+\frac{2l_{38} -l_{18} }{\xi ^{2}}\frac{\partial ^{2}}{\partial \xi \partial y}+\frac{l_{18} }{\xi ^{3}}\frac{\partial }{\partial y}, \nonumber \\ D_{41}&=\frac{h\cot \beta }{\xi }\frac{\partial ^{2}}{\partial \xi ^{2}},\quad D_{42} =-\frac{\xi }{\cot \beta }\left[ {T_{1} \frac{\partial ^{2}}{\partial \xi ^{2}}+T_{2} \left( {\frac{1}{\xi }\frac{\partial ^{2}}{\partial y^{2}}+\frac{\partial }{\partial \xi }} \right) } \right] , \nonumber \\ D_{43}&=U_{3} \left( {\frac{\partial }{\partial \xi }+\frac{1}{\xi }} \right) ,\quad D_{44} =\frac{U_{4} }{\xi }\frac{\partial }{\partial y}. \end{aligned}$$
(A.1)

where

$$\begin{aligned} U_{3}&=\int \limits _{-h_{1} }^{-h_{2} } \;\; {\varsigma _{1}^{(1)} (z)\text { d }z} +\int \limits _{-h_{2} }^{h_{3} } \;\; {\varsigma _{1}^{(2)} (z)\text { d }z} +\int \limits _{h_{3} }^{h_{4} } \;\; {\varsigma _{1}^{(3)} (z)\text { d }z} ,\,\, \nonumber \\ U_{4}&=\int \limits _{-h_{1} }^{-h_{2} } \;\; {\varsigma _{2}^{(1)} (z)\text { d }z} +\int \limits _{-h_{2} }^{h_{3} } \;\; {\varsigma _{2}^{(2)} (z)\text { d }z} +\int \limits _{h_{3} }^{h_{4} } \;\; {\varsigma _{2}^{(3)} (z)\text { d }z} .\, \nonumber \\ r_{11}&=F_{11}^{1} l_{11} +F_{12}^{1} l_{21} ,\,\,r_{12} =F_{11}^{1} l_{12} +F_{12}^{1} l_{21} ,\,r_{13} =F_{11}^{1} l_{13} +F_{12}^{1} l_{23} +F_{11}^{2}, \, \nonumber \\ r_{14}&=F_{11}^{1} l_{14} +F_{12}^{1} l_{24} +F_{12}^{2} ,\,\,r_{15} =F_{11}^{1} l_{15} +F_{12}^{1} l_{25} +F_{15}^{1} ,r_{18} =F_{11}^{1} l_{18} +F_{12}^{1} l_{28} +F_{18}^{1} ,\,\, \nonumber \\ r_{21}&=F_{11}^{1} l_{11} +F_{22}^{1} l_{21} ,\,\,r_{22} =F_{22}^{1} l_{12} +F_{12}^{1} l_{22} ,\,\,r_{23} =F_{21}^{1} l_{13} +F_{22}^{1} l_{23} +F_{21}^{1} ,\,\, \nonumber \\ r_{24}&=F_{22}^{1} l_{14} +F_{22}^{1} l_{24} +F_{22}^{2} ,\,\,\,r_{25} =F_{21}^{1} l_{15} +F_{22}^{1} l_{25} +F_{25}^{1} ,\,\,r_{28} =F_{21}^{1} l_{18} +F_{22}^{1} l_{28} +F_{28}^{1} , \nonumber \\ r_{31}&=F_{66}^{1} l_{31} ,\,\,\,\,r_{32} =F_{66}^{1} l_{32} +2F_{66}^{2} ,\,\,\,\,r_{35} =F_{35}^{1} -F_{66}^{1} l_{35} ,\,\,\,r_{38} =F_{38}^{1} -F_{66}^{1} l_{38} , \nonumber \\ l_{11}&=\frac{F_{22}^{0} }{\Delta };\,\,l_{12} =-\frac{F_{12}^{0} }{\Delta },\,\,\,l_{13} =\frac{F_{12}^{0} F_{21}^{1} -F_{11}^{1} F_{22}^{0} }{\Delta },\,\,\,l_{14} =\frac{F_{12}^{0} F_{22}^{1} -F_{12}^{1} F_{22}^{0} }{\Delta }, \nonumber \\ l_{15}&=\frac{F_{25}^{0} F_{12}^{0} -F_{15}^{0} F_{22}^{0} }{\Delta },\,\,\,l_{18} =\frac{F_{28}^{0} F_{12}^{0} -F_{18}^{0} F_{22}^{0} }{\Delta },\,\,\,\,l_{21} =-\frac{F_{21}^{0} }{\Delta },\,\,\,l_{22} =\frac{F_{11}^{0} }{\Delta },\,\,\,\, \nonumber \\ l_{23}&=\frac{F_{11}^{1} F_{21}^{0} -F_{21}^{1} F_{11}^{0} }{\Delta },\,\,\,l_{24} =\frac{F_{12}^{1} F_{21}^{0} -F_{22}^{1} F_{11}^{0} }{\Delta },\,\,\,\,l_{25} =\frac{F_{15}^{0} F_{21}^{0} -F_{25}^{0} F_{11}^{0} }{\Delta },\,\,\,l_{31} =\frac{1}{F_{66}^{0} },\, \nonumber \\ l_{28}&=\frac{F_{18}^{0} F_{21}^{0} -F_{28}^{0} F_{11}^{0} }{\Delta },\,\,\,l_{32} =-\frac{2F_{66}^{1} }{F_{66}^{0} },\,\,l_{35} =\frac{F_{35}^{0} }{F_{66}^{0} },l_{38} =\frac{F_{38}^{0} }{F_{66}^{0} },\,\,\Delta =F_{11}^{0} F_{22}^{0} -F_{12}^{0} F_{21}^{0} ,\,\, \end{aligned}$$
(A.2)

in which

$$\begin{aligned} F_{1}^{q_{1} }&=\,\int \limits _{-h_{1} }^{-h_{2} } {Y_{11}^{(1)} (\bar{{z}})z^{q_{1} }\mathrm{dz}} +Y_{11}^{(2)} \int \limits _{-h_{2} }^{h_{3} } {z^{q_{1} }\mathrm{dz}} +\int \limits _{h_{3} }^{h_{4} } {Y_{11}^{(3)} (\bar{{z}})z^{q_{1} }\mathrm{dz}} , \nonumber \\ F_{2}^{q_{1} }&=\,\int \limits _{-h_{1} }^{-h_{2} } {Y_{12}^{(1)} (\bar{{z}})z^{q_{1} }\mathrm{dz}} +Y_{12}^{(2)} \int \limits _{-h_{2} }^{h_{3} } {z^{q_{1} }\mathrm{dz}} +\int \limits _{h_{3} }^{h_{4} } {Y_{12}^{(3)} (\bar{{z}})z^{q_{1} }\mathrm{dz}} , \nonumber \\ F_{6}^{q_{1} }&=\,\int \limits _{-h_{1} }^{-h_{2} } {Y_{66}^{(1)} (\bar{{z}})z^{q_{1} }\mathrm{dz}} +Y_{66}^{(2)} \int \limits _{-h_{2} }^{h_{3} } {z^{q_{1} }\mathrm{dz}} +\int \limits _{h_{3} }^{h_{4} } {Y_{66}^{(3)} (\bar{{z}})z^{q_{1} }\mathrm{dz}} ,\,\,q_{1} =0,\,1,\,2, \nonumber \\ F_{7}^{q_{2} }&=\int \limits _{-h_{1} }^{h_{2} } \;\;{{z}^{q_{2} }U_{1}^{(1)} Y_{11}^{(1)} \left( {\bar{{z}}} \right) \text{ d }z} +\int \limits _{-h_{2} }^{h_{3} } \; z^{q_{2} }U_{1}^{(2)} Y_{11}^{(2)} \left( {\bar{{z}}} \right) \mathrm{dz}+\int \limits _{h_{3} }^{h_{4} } \; \,z^{q_{2} }U_{1}^{(3)} Y_{11}^{(3)} \left( {\bar{{z}}} \right) \mathrm{dz}, \nonumber \\ F_{8}^{q_{2} }&=\int \limits _{-h_{1} }^{h_{2} } \;{{z}^{q_{2} }U_{2}^{(1)} Y_{12}^{(1)} \left( {\bar{{z}}} \right) \text{ d }z} +\int \limits _{-h_{2} }^{h_{3} } \; z^{q_{2} }U_{222}^{(2)} Y_{12}^{(2)} \left( {\bar{{z}}} \right) \mathrm{dz}+\int \limits _{h_{3} }^{h_{4} } \; \,z^{q_{2} }U_{2}^{(3)} Y_{12}^{(3)} \left( {\bar{{z}}} \right) \mathrm{dz}, \nonumber \\ F_{9}^{q_{2} }&=\int \limits _{-h_{1} }^{h_{2} }\;\; {\text{ z}^{q_{2} }U_{1}^{(1)} Y_{12}^{(1)} \left( {\bar{{z}}} \right) \text{ d }z} +\int \limits _{-h_{2} }^{h_{3} } z^{q_{2} }U_{1}^{(2)} Y_{12}^{(2)} \left( {\bar{{z}}} \right) \mathrm{dz}+\int \limits _{h_{3} }^{h_{4} } \,z^{q_{2} }U_{1}^{(3)} Y_{12}^{(3)} \left( {\bar{{z}}} \right) \mathrm{dz}, \nonumber \\ F_{10}^{q_{2} }&=\int \limits _{-h_{1} }^{h_{2} } { \text{ z}^{q_{2} }U_{2}^{(1)} Y_{11}^{(1)} \left( {\bar{{z}}} \right) \text{ d }z} +\int \limits _{-h_{2} }^{h_{3} } \; z^{q_{2} }U_{2}^{(2)} Y_{11}^{(2)} \left( {\bar{{z}}} \right) \mathrm{dz}+\int \limits _{h_{3} }^{h_{4} } \; \,z^{q_{2} }U_{2}^{(3)} Y_{11}^{(3)} \left( {\bar{{z}}} \right) \mathrm{dz}, \nonumber \\ F_{11}^{q_{2} }&=\int \limits _{-h_{1} }^{h_{2} } {\text{ z}^{q_{2} }U_{1}^{(1)} Y_{66}^{(1)} \left( {\bar{{z}}} \right) \text{ d }z} +\int \limits _{-h_{2} }^{h_{3} } \; z^{q_{2} }U_{1}^{(2)} Y_{66}^{(2)} \left( {\bar{{z}}} \right) \mathrm{dz}+\int \limits _{h_{3} }^{h_{4} } \; \,z^{q_{2} }U_{1}^{(3)} Y_{66}^{(3)} \left( {\bar{{z}}} \right) \mathrm{dz}, \nonumber \\ F_{12}^{q_{2} }&=\int \limits _{-h_{1} }^{h_{2} } { \text{ z}^{q_{2} }U_{2}^{(1)} Y_{66}^{(1)} \left( {\bar{{z}}} \right) \text{ d }z} +\int \limits _{-h_{2} }^{h_{3} } z^{q_{2} }U_{2}^{(2)} Y_{66}^{(2)} \left( {\bar{{z}}} \right) \mathrm{dz}+\int \limits _{h_{3} }^{h_{4} } \; \,z^{q_{2} }U_{2}^{(3)} Y_{66}^{(3)} \left( {\bar{{z}}} \right) \mathrm{dz},\,q_{2} =0,\,1.\, \end{aligned}$$
(A.3)

Appendix B

The parameters \(A_{lq} (l,q=1,2,3,4)\) are given as,

$$\begin{aligned} A_{11}&=\frac{\alpha _{1}^{2} \nabla _{b-1/2} }{4t_{2}^{3} }\left\{ {r_{12} \left[ {\alpha _{1}^{4} -3\left( {b-1} \right) \left( {b+1} \right) ^{3}-2\alpha _{1}^{2} \left( {b+4} \right) \left( {b+1} \right) } \right] } \right. \left. {+\left( {r_{11} -r_{31} } \right) \alpha _{2}^{2} \left( {b^{2}-b-2+\alpha _{1}^{2} } \right) } \right\} , \nonumber \\&\quad -\frac{\alpha _{1}^{2} \nabla _{b-1/2} }{8t_{2}^{3} }\left\{ {3\left( {2r_{31} -3r_{11} +r_{21} } \right) \alpha _{2}^{2} +\left( {r_{11} -5r_{12} -r_{22} } \right) \left[ {\left( {b+1} \right) ^{2}\left( {4b-5} \right) +\alpha _{1}^{2} \left( {4b+7} \right) } \right] } \right. , \nonumber \\&\quad \left. {+2\left( {7r_{12} +4r_{22} -4r_{11} -r_{21} } \right) \left[ {\left( {b^{2}-b-2} \right) +\alpha _{1}^{2} } \right] -9\left( {r_{11} -r_{12} -r_{22} +r_{21} } \right) } \right\} , \nonumber \\ A_{12}&=-\frac{\alpha _{1}^{2} \nabla _{b-1} }{4t_{2}^{4} }\left\{ {r_{13} \left[ {\left( {4-3b} \right) b^{3}-\left[ {2b\left( {b+2} \right) -\alpha _{1}^{2} } \right] \alpha _{1}^{2} } \right] } \right. +(r_{14} +r_{32} )\alpha _{2}^{2} \left[ {b\left( {b-2} \right) +\alpha _{1}^{2} } \right] , \nonumber \\&\quad +\left( {4r_{14} +4r_{32} +r_{24} } \right) \alpha _{2}^{2} +\left( {r_{23} +5r_{13} -r_{14} } \right) \left( {2b^{3}+2b\alpha _{1}^{2} -3b^{2}+\alpha _{1}^{2} } \right) , \nonumber \\&\quad \left. {+\left( {4r_{14} -4r_{23} -7r_{13} +r_{24} } \right) \left[ {b\left( {b-2} \right) +\alpha _{1}^{2} } \right] -3(r_{14} +r_{24} +r_{32} )\alpha _{2}^{2} -3\left( {r_{23} +r_{13} -r_{14} -r_{24} } \right) } \right\} , \nonumber \\ A_{13}&=\frac{\alpha _{1} \nabla _{b-1/2} }{8t_{2}^{3} }\left\{ {r_{35} \left[ {\left( {2b-1} \right) b+2\alpha _{1}^{2} } \right] \alpha _{2}^{2} } \right. -r_{15} \left[ {\left( {2b-1} \right) b^{3}+\alpha _{1}^{2} (3b-2\alpha _{1}^{2} )} \right] , \nonumber \\&\quad +(2r_{15} +r_{25} )\left[ {\alpha _{1}^{2} (1+2b)-b^{2}(1-2b)} \right] \,\left. {-2r_{25} \left[ {\left( {2b-1} \right) b+2\alpha _{1}^{2} } \right] } \right\} , \nonumber \\&\quad -\frac{\alpha _{1} \nabla _{b-1/2} }{8t_{2}^{3} }\left\{ {-U_{3} \left[ {b\left( {1+2b} \right) +2\alpha _{1}^{2} } \right] x_{2}^{2} +r_{35} \left( {2b+1} \right) \alpha _{2}^{2} } \right\} , \nonumber \\ A_{{14}}&=\frac{\alpha _{2} \alpha _{1}^{2} \nabla _{b-1/2} }{8t_{2}^{3} }\left\{ {1-2\left( {r_{38} +r_{18} } \right) \left[ {\left( {b-1} \right) b+\alpha _{1}^{2} } \right] +3r_{28} -2r_{18} -2r_{38} \,} \right\} , \nonumber \\ A_{{21}}&=\frac{\alpha _{2}^{2} \alpha _{1}^{2} \nabla _{b} }{4t_{2}^{2} }\left[ {r_{21} \alpha _{2}^{2} +\left( {r_{22} -r_{31} } \right) \left( {b^{2}+\alpha _{1}^{2} -1} \right) -r_{31} +r_{22} -r_{21} } \right] , \nonumber \\ A_{{22}}&=\frac{\alpha _{1}^{2} \alpha _{2}^{2} \nabla _{b-1/2} }{8t_{2}^{3} }\left\{ {2r_{24} \alpha _{2}^{2} +r_{32} +r_{23} -r_{24} 2(r_{32} +r_{23} )\left[ {(b-1)b+\alpha _{1}^{2} } \right] } \right\} , \nonumber \\ A_{{23}}&=\frac{\alpha _{1} \alpha _{2}^{2} }{4t_{2}^{2} }\left\{ {br_{35} \nabla _{b} +\frac{\left( {r_{25} +r_{35} } \right) \left[ {\left( {2b-1} \right) b+2\alpha _{1}^{2} } \right] \nabla _{b-1/2} }{2t_{2} }} \right\} , \nonumber \\ A_{{24}}&=-\frac{\alpha _{1}^{2} \alpha _{2} }{4}\left\{ {U_{4} \nabla _{b+1} +\frac{\left[ {r_{38} \left( {\alpha _{1}^{2} +b^{2}} \right) +r_{28} \alpha _{2}^{2} } \right] \nabla _{b} }{t_{2}^{2} }} \right\} , \nonumber \\ A_{{31}}&=\frac{\alpha _{1}^{2} \nabla _{b} }{4t_{2}^{3} }\left\{ {\alpha _{2}^{4} l_{11} +\alpha _{2}^{2} \left( {l_{31} +l_{21} +l_{12} } \right) \left( {b^{2}+\alpha _{1}^{2} -1} \right) +\alpha _{2}^{2} (2l_{31} +3l_{21} +l_{12} )} \right. \, \nonumber \\&\quad -\alpha _{2}^{2} \left( {l_{31} +2l_{21} +2l_{11} } \right) +l_{22} \left[ {\alpha _{1}^{4} -\left( {b+1} \right) ^{3}\left( {3b-1} \right) -2\left( {b+3} \right) \left( {b+1} \right) \alpha _{1}^{2} } \right] \nonumber \\&\quad +\left( {4l_{22} -l_{21} +l_{12} } \right) \left[ {\alpha _{1}^{2} (2b+3)+b^{2}(3+2b)-1} \right] \nonumber \\&\quad \left. {-\left( {5l_{22} +3l_{12} -3l_{21} -l_{11} } \right) \left( {\alpha _{1}^{2} +b^{2}-1} \right) +2\left( {l_{11} +l_{21} -l_{22} -l_{12} } \right) } \right\} , \nonumber \\ A_{{32}}&=\frac{\alpha _{1}^{2} \nabla _{b-1/2} }{8t_{2}^{4} }\left\{ {2\alpha _{2}^{4} l_{14} -2\left( {l_{32} -l_{13} -l_{24} } \right) \left( {b^{2}-b+\alpha _{1}^{2} } \right) } \right. +\alpha _{2}^{2} \left( {l_{13} -2l_{32} +3l_{24} } \right) \nonumber \\&\quad +2\alpha _{2}^{2} \left( {l_{32} -2l_{24} -2l_{14} } \right) +2l_{23} \left[ {\left( {2-3b} \right) b^{3}-2\alpha _{1}^{2} b\left( {b+1} \right) +\alpha _{1}^{4} } \right] \nonumber \\&\quad +\left( {l_{13} -l_{24} +4l_{23} } \right) \left( {4b^{3}-3b^{2}+4\alpha _{1}^{2} b+\alpha _{1}^{2} } \right) +2\left( {l_{14} -3l_{13} +3l_{24} -5l_{23} } \right) \left( {b^{2}-b+\alpha _{1}^{2} } \right) \nonumber \\&\quad \left. {-\left( {l_{14} -3l_{13} +3l_{24} -5l_{23} } \right) } \right\} \,+\frac{\alpha _{1}^{2} (b^{2}+\alpha _{1}^{2} )\nabla _{b} \cot \beta }{4t_{2}^{3} }, \nonumber \\ A_{{33}}&=\frac{(b^{2}+\alpha _{1}^{2} )\alpha _{1} \nabla _{b} }{4x_{2}^{3} }\left[ {\alpha _{2}^{2} \left( {l_{35} +l_{15} } \right) -l_{25} \left( {b^{2}-\alpha _{1}^{2} } \right) -\left( {l_{25} +l_{15} } \right) b-l_{15} } \right] , \nonumber \\ A_{{34}}&=\frac{\alpha _{1}^{2} \alpha _{2} \nabla _{b} }{4t_{2}^{3} }\left[ {l_{18} -l_{18} \alpha _{2}^{2} -\left( {l_{38} +l_{28} } \right) \left( {\alpha _{1}^{2} +b^{2}} \right) } \right] , \nonumber \\ A_{41}&=-\frac{0.25\left( {b^{2}+\alpha _{1}^{2} } \right) \alpha _{1}^{2} \nabla _{b} \cot \beta }{t_{2}^{2} },\,\,A_{42} =-T_{1} A_{T_{1} } -T_{2} A_{T_{2} }, \nonumber \\ A_{43}&=-\frac{0.25\alpha _{1} \nabla _{b+1/2} }{t_{2} }\left\{ {U_{3} \left[ {\left( {b+1/2} \right) b+\alpha _{1}^{2} } \right] +U_{4} \left( {b+1/2} \right) } \right\} ,\,\,\,A_{44} =\frac{0.25U_{4} \alpha _{1}^{2} \alpha _{2} \nabla _{b+1/2} }{t_{2} }, \nonumber \\ A_{T_{1} }&=-\frac{0.125\alpha _{1}^{2} (2\alpha _{1}^{2} +2b^{2}+2b-1)\nabla _{b+1/2} }{t_{2} \cot \beta },\,\,\,A_{T_{2} } =-\frac{0.125\alpha _{1}^{2} \left( {2\alpha _{2}^{2} +1} \right) \nabla _{b+1/2} }{t_{2} \cot \beta },\,\, \nonumber \\ A_{H_{P} }&=A_{T_{1} } +A_{T_{2} } =-\frac{0.0625\alpha _{1}^{2} \left( {2\alpha _{1}^{2} +4\alpha _{2}^{2} +2b^{2}+2b+1} \right) \nabla _{b+1/2} }{t_{2} \cot \beta }, \nonumber \\ \Pi _{1}&=-\left| {\begin{array}{ccc} A_{12}&{} A_{13}&{} \,A_{14} \\ A_{22}&{} A_{23}&{} \,A_{24} \\ A_{32}&{} A_{33}&{} \,A_{34} \\ \end{array}} \right| ,\quad \Pi _{2} =\left| {\begin{array}{ccc} A_{11}&{} A_{13}&{} \,A_{14} \\ A_{21}&{} A_{23}&{} \,A_{24} \\ A_{31}&{} A_{33}&{} \,A_{34} \\ \end{array}} \right| ,\quad \Pi _{3} =-\left| {\begin{array}{ccc} A_{11}&{} A_{12}&{} A_{14} \\ A_{21}&{} A_{22}&{} A_{24} \\ A_{31}&{} A_{32}&{} \,A_{34} \\ \end{array}} \right| ,\quad \Pi _{4} =\left| {\begin{array}{ccc} A_{11}&{} A_{12}&{} A_{13} \\ A_{21}&{} A_{22}&{} A_{23} \\ A_{31}&{} A_{32}&{} A_{33} \\ \end{array}} \right| \nonumber \\ \end{aligned}$$
(B1)

where

$$\begin{aligned} \nabla _{b+q} =\frac{\left[ {1-e^{-2t_{0} (b+q)}} \right] }{\left[ {\left( {b+q} \right) ^{2}+\alpha _{1}^{2} } \right] \left( {b+q} \right) },\,\,q=-1.0;-1/2;\,\,0;\,1/2;1.0. \end{aligned}$$
(B2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofiyev, A.H., Bayramov, R.P. & Heydarov, S.H. The stability of composite conical shells covered by carbon nanotube-reinforced coatings under external pressures. Acta Mech 231, 4547–4562 (2020). https://doi.org/10.1007/s00707-020-02779-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02779-4

Navigation