Skip to main content

Advertisement

Log in

Vibration energy flow analysis of periodic nanoplate structures under thermal load using fourth-order strain gradient theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A nonlocal Kirchhoff plate model with fourth-order strain gradient theory is firstly proposed to study variations with band gap frequencies and vibration energy distribution. The temperature rise is supposed to vary linearly through the thickness of the periodic nanoplate structures. The dynamic equations of finite periodic nanoplate structures under thermal load with the small-scale effect and the nonlinear membrane strain taken into consideration are derived based on the finite element method. The structural intensity approach is developed to predict the vibration energy flow of the periodic nanoplates. Effects of the temperature rise on band gaps and the structural intensity are divided into two parts. One is nonlinear effects of temperature rise, and the other is effects of the thermal load. In the numerical calculation, the natural frequencies of single-layer graphene sheets computed by the nonlocal finite element method with fourth-order strain gradient agree well with analytical results, which validate the effectiveness of the present method. The influences of nonlocal parameters and thermal load on the band gap and structural intensity are considered, respectively. The boundary value has been achieved to determine the critical mechanical load or thermal load for analyzing in depth the effects of the mechanical load and thermal load on the structural intensity. The proposed method shows that the vibration energy flow pattern may be controlled by adjusting the magnitude of the mechanical or thermal load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Danilo, K., Predrag, K., Sondipon, A.: Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field. Int. J. Mech. Sci. 96, 132–142 (2015)

    Google Scholar 

  2. Khanmirza, E., Jamalpoor, A., Kiani, A.: Nano-scale mass sensor based on the vibration analysis of a magneto-electro-elastic nanoplate resting on a visco-Pasternak substrate. Eur. Phy. J. Plus. 132, 422 (2017)

    Article  Google Scholar 

  3. Victor, W.B., Min Seok, J., Michelle, S.: Highly confined tunable Mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013)

    Article  Google Scholar 

  4. Miao, T.F., Yeom, S., Wang, P.: Graphene nanoelectromechanical systems as stochastic-frequency oscillators. Nano Lett. 14, 2982–2987 (2014)

    Article  Google Scholar 

  5. Farajpour, A., Ghayesh, M.H., Farokhi, H.: A review on the mechanics of nanostructures. Int. J. Eng. Sci. 133, 231–263 (2018)

    Article  MathSciNet  Google Scholar 

  6. Balandin, A.A.: Superior thermal conductivity of single-layer graphene. Nano. Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  7. Shih, M.H., Li, L.J., Yang, Y.C.: Efficient heat dissipation of photonic crystal microcavity by mono layer graphene. ACS Nano 7, 10818–10824 (2013)

    Article  Google Scholar 

  8. Li, X., Fang, M., Wang, W.: Graphene heat dissipation film for thermal management of hot spot in electronic device. J. Mater. Sci. Mater. Electron. 27, 7715–7721 (2016)

    Article  Google Scholar 

  9. Scarpa, F., Chowdhury, R., Kam, K.: Dynamic of mechanical waves in periodic graphene nanoribbon assemblies. Nanoscale. Res. Lett. 430, 430 (2011)

    Article  Google Scholar 

  10. Liu, C.C., Chen, Z.B.: Dynamic analysis of finite periodic structures with various boundaries. Phys. E 60, 139–146 (2014)

    Article  Google Scholar 

  11. Cai, J.G., Qi, L.M.: Recent advances in antireflective surfaces based on nanostructure arrays. Mater. Horiz. 2, 37–53 (2015)

    Article  Google Scholar 

  12. Ghanekar, A., Ji, J., Zheng, Y.: High-rectification near-field thermal diode using phase change periodic nanostructure. Appl. Phys. Lett. 109, 123106 (2016)

    Article  Google Scholar 

  13. Hong, B.S., Park, J., Jeon, S.G.: Monolithic Bi1.5sb0.5Te3 ternary alloys with a periodic 3D nanostructure for enhancing thermoelectric performance. J. Mater. Chem. C. 5, 8974–8980 (2017)

    Article  Google Scholar 

  14. Rudenko, A., Colombier, J.P., Hoehm, S.: Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin. Sci. Rep. 7, 12306 (2017)

    Article  Google Scholar 

  15. Oh, S., Lee, K.J., Lee, H.J., Kim, S.J., Han, J., Kang, N.W., Kwon, J.S., Kim, H., Kim, K.K., Park, S.J.: Periodic air-nanoplate-embedded AlGaN/air/Al omnidirectional reflector for high effiency ultraviolet emitters. Scr. Mater. 146, 41–45 (2018)

    Article  Google Scholar 

  16. Yang, L., Chen, Z., Matthew, G., Dargusch, S.: High performance thermoelectric materials: progress and their applications. Adv. Energy. Mater. 8, 1701797 (2018)

    Article  Google Scholar 

  17. Liu, R.M., Wang, L.F.: Thermal vibrations of single-layered graphene sheets by molecular dynamics. J. Nanosci. Nanotechnol. 13, 1059–1062 (2013)

    Article  Google Scholar 

  18. Hosseini, M., Jamalpoor, A., Bahreman, M.: Small-scale effects on the free vibrational behavior of embedded viscoelastic double-nanoplate-systems under thermal environment. Acta. Astronaut. 129, 400–409 (2016)

    Article  Google Scholar 

  19. Satish, N., Narendar, S., Brahma Raju, K.: Magnetic and surface elasticity effects on thermal vibration properties of nanoplates. Compos. Struct. 180, 568–580 (2017)

    Article  Google Scholar 

  20. Barati, M.R., Shahverdi, H.: Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress–strain gradient theory. Compos. Struct. 176, 982–995 (2017)

    Article  Google Scholar 

  21. Despotovic, N.: Stability and vibration of a nanoplate under body force using nonlocal elasticity theory. Acta. Mech. 229, 273–284 (2018)

    Article  MathSciNet  Google Scholar 

  22. Wang, L.F., Hu, H.Y.: Thermal vibration of a rectangular single-layered graphene sheet with quantum effects. J. Appl. Phys. 115, 233515 (2014)

    Article  Google Scholar 

  23. Nematollahi, M.S., Mohammadi, H., Nematollahi, M.A.: Thermal vibration analysis of nanoplates based on the higher order nonlocal strain gradient theory by an analytical approach. Superlattice. Microst. 111, 944–959 (2017)

    Article  Google Scholar 

  24. Chen, T., Ye, Y.M., Li, Y.Q.: Investigations on structural intensity in nanoplates with thermal load. Phys. E 103, 1–9 (2018)

    Article  Google Scholar 

  25. Thai, H.T., Vo, T.P., Nguyen, T.K., Kim, S.E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)

    Article  Google Scholar 

  26. Askes, H., Suiker, A.S.J., Sluys, L.J.: A classification of higher-order strain-gradient models-linear analysis. Arch. Appl. Mech. 72, 171–188 (2002)

    Article  Google Scholar 

  27. Wang, L.F., Hu, H.Y.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B. 71, 195412 (2005)

  28. Jeyaraj, P., Ganesan, N., Padmanabhan, C.: Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment. J. Sound. Vib. 320, 322–338 (2009)

    Article  Google Scholar 

  29. Wu, Y., Yu, K.P., Yang, L.Y., Zhao, R., Shi, X.T., Tian, K.: Effect of thermal stresses on frequency band structures of elastic metamaterial plates. J. Sound. Vib. 413, 101–119 (2018)

    Article  Google Scholar 

  30. Hambric, S.A.: Power flow and mechanical intensity calculations in structural finite element analysis. J. Vib. Acoust. 112, 542–549 (1990)

    Article  Google Scholar 

  31. Xu, W., Wang, L.F., Jiang, J.N.: Strain gradient finite element analysis on the vibration of double-layered graphene sheets. Int. J. Comput. Meth. 13, 1650011 (2016)

    Article  MathSciNet  Google Scholar 

  32. Yoon, D., Son, Y.W., Cheong, H.: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano. Lett. 11, 3227–3231 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China under Grant Number 11102047 and Science Foundation of Heilongjiang Province of China under Grant Number. LC2016001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

\(\mathbf{w }_{\mathbf{e }}\) and \(\mathbf{B }_{\mathbf{T }}\) are written as

$$\begin{aligned} \mathbf{w }_{\mathbf{e }}= & {} \left[ {{\begin{array}{cccccccccccc} {w_{1}} &{} \quad {\theta _{x_{1}}} &{} \quad {\theta _{y_{1}}} &{} \quad {w_{2}} &{} \quad {\theta _{x_{2}}} &{} \quad {\theta _{y_{2}}} &{} \quad {w_{3}} &{} \quad {\theta _{x_{3}}} &{} \quad {\theta _{y_{3}}} &{} \quad {w_{4}} &{} \quad {\theta _{x_{4}}} &{} \quad {\theta _{y_{4}}} \\ \end{array}}} \right] ^{\mathrm{T}}, \end{aligned}$$
(A.1)
$$\begin{aligned} \mathbf{B }_{\mathbf{T }}= & {} \left[ {{\begin{array}{cccccccccccc} 0 &{} \quad 1 &{} \quad 0 &{} \quad {2x} &{} \quad y &{} \quad 0 &{} \quad {3x^{2}} &{} \quad {2xy} &{} \quad {y^{2}} &{} \quad 0 &{} \quad {3x^{2}y} &{} \quad {y^{3}} \\ 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad x &{} \quad {2y} &{} \quad 0 &{} \quad {x^{2}} &{} \quad {2xy} &{} \quad {3y^{2}} &{} \quad {x^{3}} &{} \quad {3xy^{2}} \\ \end{array}}} \right] \mathbf{A }^{-1}, \end{aligned}$$
(A.2)

where each node of four-node plate elements has three degrees of freedom \(w_{i}\), \(\theta _{x_{i}} =\partial w_{i} /\partial y\), and \(\theta _{y_{i}} =-\partial w_{i} /\partial x\). \(\mathbf{A }\) represents the shape function’s evaluations at the element nodes.

Appendix B

\(\mathbf{B }\) is written as

$$\begin{aligned} \mathbf{B }=\left[ {{\begin{array}{cccccccccccc} 0 &{} \quad 0 &{} \quad 0 &{} \quad 2 &{} \quad 0 &{} \quad 0 &{} \quad {6x} &{} \quad {2y} &{} \quad 0 &{} \quad 0 &{} \quad {6xy} &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 2 &{} \quad 0 &{} \quad 0 &{} \quad {2x} &{} \quad {6y} &{} \quad 0 &{} \quad {6xy} \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 2 &{} \quad 0 &{} \quad 0 &{} \quad {4x} &{} \quad {4y} &{} \quad 0 &{} \quad {6x^{2}} &{} \quad {6y^{2}} \\ \end{array}}} \right] \mathbf{A }^{-1}. \end{aligned}$$
(B.1)

Appendix C

\(\mathbf{S }\) is written as

$$\begin{aligned} \mathbf{S }=\left[ {{\begin{array}{cccccccccccc} 1 &{} \quad x &{} \quad y &{} \quad {x^{2}} &{} \quad {xy} &{} \quad {y^{2}} &{} \quad {x^{3}} &{} \quad {x^{2}y} &{} \quad {xy^{2}} &{} \quad {y^{3}} &{} \quad {x^{3}y} &{} \quad {xy^{3}} \\ \end{array}}} \right] \mathbf{A }^{-1}. \end{aligned}$$
(C.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Chen, H. & Liu, L. Vibration energy flow analysis of periodic nanoplate structures under thermal load using fourth-order strain gradient theory. Acta Mech 231, 4365–4379 (2020). https://doi.org/10.1007/s00707-020-02765-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02765-w

Navigation