Skip to main content
Log in

Theoretical analysis and experimental measurement of coupling dynamic characteristics for transversely isotropic rectangular plate based on modified FSDT assumption

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The theoretical analysis of thick plate vibration behavior has been investigated in the literature, but most of the studies were focused on flexural dynamic characteristics and lack experimental verification. In this study, the analytical solutions based on the superposition method for both the flexural and extensional vibrations are presented to obtain resonant frequencies and associated mode shapes for a transversely isotropic thick rectangular plate. The displacement equilibrium equations and boundary conditions of the modified first-order shear deformation theory (FSDT) are derived by utilizing Hamilton’s principle and the variation method. To verify the validity of the theoretical model, the finite-element method (FEM) and impact experiment results for thick plates are employed in this work. Excellent agreement of resonant frequencies and associated mode shapes is obtained for FEM calculation and theoretical analysis. To excite vibrations of a thick rectangular plate, a steel ball controlled by an electromagnet is utilized. A steel ball is dropped freely from a height of 231 mm on the top of the plate surface, and a transient wave will be generated after the ball impact on the specimen. The frequency spectrum of the thick rectangular plate is constructed by using the fast Fourier transform of the time-domain transient response. The excited resonant frequencies obtained from experimental measurement are compared with theoretical results. The comparisons show that the modified FSDT provides an excellent prediction of the resonant frequencies and mode shapes for the dynamic characteristics of thick rectangular plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mindlin, R.D., Deresiewicz, H.: Thicknessshear and flexural vibrations of a circular disk. J. Appl. Phys. 25(10), 1329–1332 (1954)

    Article  MathSciNet  Google Scholar 

  2. Dawe, D.J., Roufaeil, O.: Rayleigh–Ritz vibration analysis of Mindlin plates. J. Sound Vib. 69(3), 345–359 (1980)

    Article  Google Scholar 

  3. Liew, K.M., Xiang, Y., Wang, C.M., Kitipornchai, S.: Flexural vibration of shear deformable circular and annular plates on ring supports. Comput. Methods Appl. Mech. Eng. 110(3–4), 301–315 (1993)

    Article  Google Scholar 

  4. Gorman, D.J., Ding, W.: Accurate free vibration analysis of the completely free rectangular Mindlin plate. J. Sound Vib. 189(3), 341–353 (1996)

    Article  Google Scholar 

  5. Karunasena, W., Kitipornchai, S., Al-Bermani, F.G.A.: Free vibration of cantilevered arbitrary triangular Mindlin plates. Int. J. Mech. Sci. 38(4), 431–442 (1996)

    Article  Google Scholar 

  6. Liew, K.M.: Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the \(p\)-Ritz method. J. Sound Vib. 198(3), 343–360 (1996)

    Article  Google Scholar 

  7. Gorman, D.J.: Free vibration analysis of Mindlin plates with uniform elastic edge support by the superposition method. J. Sound Vib. 207(3), 335–350 (1997)

    Article  Google Scholar 

  8. Gorman, D.J.: Accurate free vibration analysis of shear-deformable plates with torsional elastic edge support. J. Sound Vib. 203(2), 209–218 (1997)

    Article  Google Scholar 

  9. Xiang, Y., Wei, G.W.: Exact solutions for vibration of multi-span rectangular Mindlin plates. J. Vib. Acoust. 124(4), 545–551 (2002)

    Article  Google Scholar 

  10. Liu, B., Xing, Y.: Exact solutions for free vibrations of orthotropic rectangular Mindlin plates. Compos. Struct. 93(7), 1664–1672 (2011)

    Article  Google Scholar 

  11. Wu, Y.C., Huang, Y.H., Ma, C.C.: Theoretical analysis and experimental measurement of flexural vibration and dynamic characteristics for piezoelectric rectangular plate. Sens. Actuators A Phys. 264, 308–332 (2017)

    Article  Google Scholar 

  12. Gazis, D.C., Mindlin, R.D.: Extensional vibrations and waves in a circular disk and a semi-infinite plate. J. Appl. Mech. 27(3), 541–547 (1960)

    Article  MathSciNet  Google Scholar 

  13. Whitney, J.M., Sun, C.T.: A higher order theory for extensional motion of laminated composites. J. Sound Vib. 30(1), 85–97 (1973)

    Article  Google Scholar 

  14. Chen, S.S.H., Liu, T.M.: Extensional vibration of thin plates of various shapes. J. Acoust. Soc. Am. 58(4), 828–831 (1975)

    Article  Google Scholar 

  15. Gorman, D.J.: Free in-plane vibration analysis of rectangular plates by the method of superposition. J. Sound Vib. 272(3–5), 831–851 (2004)

    Article  Google Scholar 

  16. Mindlin, R.D., Yang, J.: An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. World Scientific, New Jersey (2006)

    Book  Google Scholar 

  17. Zhang, C.L., Yang, J.S., Chen, W.Q.: Harvesting magnetic energy using extensional vibration of laminated magnetoelectric plates. Appl. Phys. Lett. 95(1), 013511 (2009)

    Article  Google Scholar 

  18. Ding, B.J., Du, J.K., Lou, J., Wang, J., Ma, T.F., Huang, B., Yi, L.J.: Experimental study on extensional vibration of a piezoelectric/piezomagnetic laminated plate. In: 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), pp. 454–457 IEEE (2015)

  19. Shahab, A.A.S.: Finite element analysis for the vibration of variable thickness discs. J. Sound Vib. 162(1), 67–88 (1993)

    Article  Google Scholar 

  20. Lee, H., Singh, R.: Acoustic radiation from out-of-plane modes of an annular disk using thin and thick plate theories. J. Sound Vib. 282(1–2), 313–339 (2005)

    Article  Google Scholar 

  21. Kapuria, S., Bhattacharyya, M., Kumar, A.N.: Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Compos. Struct. 82(3), 390–402 (2008)

    Article  Google Scholar 

  22. Chuang, K.C., Liou, H.C., Ma, C.C.: Investigation of polyvinylidene fluoride (PVDF) films in identifying high-frequency vibration modes of flexible plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(6), 1047–1058 (2014)

    Article  Google Scholar 

  23. Bower, A.F.: Applied Mechanics of Solids. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports of this research by the Ministry of Science and Technology (Republic of China) under Grant MOST 107-2221-E-002-086-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Ching Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Constants in the flexural type displacement solutions

The constants in the flexural type displacement solutions are listed as follows:

As \(m=0\), the coefficients of the first and third building block are

$$\begin{aligned} \left[ {{\begin{array}{llll} {\theta X_{10k1}^{F} } \\ {\theta X_{10k2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {1 \big / {\left( {S_{10k1}^{F} +X_{101}^{F} S_{10k2}^{F} } \right) }} \\ {X_{101}^{F} \theta X_{10k1}^{F} } \\ \end{array} }} \right] , \ \left[ {{\begin{array}{l} {\theta Z_{10k1}^{F} } \\ {\theta Z_{10k2}^{F} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {S_{10k1}^{F} \theta X_{10k1}^{F} } \\ {S_{10k2}^{F} \theta X_{10k2}^{F} } \\ \end{array} }} \right] ,\hbox { and }k=1,2,3, \end{aligned}$$
(A.1)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{30k1}^{F} } \\ {\theta X_{30k2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {1 \big / {\left( {S_{30k1}^{F} +X_{301}^{F} S_{30k2}^{F} } \right) }} \\ {X_{301}^{F} \theta X_{30k1}^{F} } \\ \end{array} }} \right] ,\ \left[ {{\begin{array}{l} {\theta Z_{30k1}^{F} } \\ {\theta Z_{30k2}^{F} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {S_{30k1}^{F} \theta X_{30k1}^{F} } \\ {S_{30k2}^{F} \theta X_{30k2}^{F} } \\ \end{array} }} \right] ,\hbox {and }k=1,2,3, \end{aligned}$$
(A.2)
$$\begin{aligned} X_{101}^{F}= & {} -{BQ_{10k1}^{F} } \big / {BQ_{10k2}^{F} }, \ X_{301}^{F} =-{BQ_{30k1}^{F} } \big / {BQ_{30k2}^{F} }, \end{aligned}$$
(A.3)
$$\begin{aligned} BQ_{10k1}^{F}= & {} \left\{ {{\begin{array}{l} {S_{10k1}^{F} -{\alpha _{m}^{F} } \big / \phi \hbox { as }R_{m1}^{F}<0}, \\ {S_{10k1}^{F} +{\alpha _{m}^{F} } \big / \phi \hbox { as }R_{m1}^{F}>0}, \\ \end{array} }} \right. BQ_{10k2}^{F} =\left\{ {{\begin{array}{l} {S_{10k2}^{F} -{\beta _{m}^{F} } \big / \phi \hbox { as }R_{m2}^{F} <0}, \\ {S_{10k2}^{F} +{\beta _{m}^{F} } \big / \phi \hbox { as }R_{m2}^{F} >0}, \\ \end{array} }} \right. \end{aligned}$$
(A.4)
$$\begin{aligned} BQ_{30k1}^{F}= & {} \left\{ {{\begin{array}{l} {S_{30k1}^{F} +{\alpha _{m}^{F} } \big / \phi \hbox { as }R_{m1}^{F}<0}, \\ {S_{30k1}^{F} -{\alpha _{m}^{F} } \big / \phi \hbox { as }R_{m1}^{F}>0}, \\ \end{array} }} \right. BQ_{30k2}^{F} =\left\{ {{\begin{array}{l} {S_{30k2}^{F} +{\beta _{m}^{F} } \big / \phi \hbox { as }R_{m2}^{F} <0}, \\ {S_{30k2}^{F} -{\beta _{m}^{F} } \big / \phi \hbox { as }R_{m2}^{F} >0}, \\ \end{array} }} \right. \end{aligned}$$
(A.5)
$$\begin{aligned} S_{10k1}^{F}= & {} \left\{ {{\begin{array}{l} {-{\left[ {-a_{m13}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+a_{m14}^{F} } \right] } \big / {\left( {c_{m14}^{F} \alpha _{m}^{F} } \right) } \text{ as } R_{m1}^{F}<0}, \\ {-{\left[ {a_{m13}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+a_{m14}^{F} } \right] } \big / {\left( {c_{m14}^{F} \alpha _{m}^{F} } \right) } \text{ as } R_{m1}^{F} >0}, \\ \end{array} }} \right. \end{aligned}$$
(A.6)
$$\begin{aligned} S_{10k2}^{F}= & {} \left\{ {{\begin{array}{l} {-{\left[ {-a_{m13}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+a_{m14}^{F} } \right] } \big / {\left( {c_{m14}^{F} \beta _{m}^{F} } \right) } \text{ as } R_{m2}^{F}<0},\\ {-{\left[ {a_{m13}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+a_{m14}^{F} } \right] } \big / {\left( {c_{m14}^{F} \beta _{m}^{F} } \right) } \text{ as } R_{m2}^{F} >0}, \\ \end{array} }} \right. \end{aligned}$$
(A.7)
$$\begin{aligned} S_{30k1}^{F}= & {} \left\{ {{\begin{array}{l} {{\left[ {-a_{m13}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+a_{m14}^{F} } \right] } \big / {\left( {c_{m14}^{F} \alpha _{m}^{F} } \right) } \text{ as } R_{m1}^{F}<0}, \\ {{\left[ {a_{m13}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+a_{m14}^{F} } \right] } \big / {\left( {c_{m14}^{F} \alpha _{m}^{F} } \right) } \text{ as } R_{m1}^{F} >0,} \\ \end{array} }} \right. \end{aligned}$$
(A.8)
$$\begin{aligned} S_{30k2}^{F}= & {} \left\{ {{\begin{array}{l} {{\left[ {-a_{m13}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+a_{m14}^{F} } \right] } \big / {\left( {c_{m14}^{F} \beta _{m}^{F} } \right) } \text{ as } R_{m2}^{F}<0}, \\ {{\left[ {a_{m13}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+a_{m14}^{F} } \right] } \big / {\left( {c_{m14}^{F} \beta _{m}^{F} } \right) } \text{ as } R_{m2}^{F} >0,} \\ \end{array} }} \right. \end{aligned}$$
(A.9)

As \(m\ge 1\), the coefficients of the first and third building block are

$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{1mk1}^{F} } \\ {\theta X_{1mk2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {1 \big / {\left( {S_{1mk1}^{F} +X_{1m1}^{F} S_{1mk2}^{F} +X_{1m2}^{F} S_{1mk3}^{F} } \right) }} \\ {X_{1m1}^{F} \theta X_{1mk1}^{F} } \\ \end{array} }} \right] ,\hbox { and }k=1,2,3, \end{aligned}$$
(A.10)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta Y_{1mk1}^{F} } \\ {\theta Y_{1mk2}^{F} } \\ {\theta Y_{1mk3}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {R_{1mk1}^{F} \theta X_{1mk1}^{F} } \\ {R_{1mk2}^{F} \theta X_{1mk2}^{F} } \\ {X_{1m2}^{F} \theta X_{1mk1}^{F} } \\ \end{array} }} \right] , \ \left[ {{\begin{array}{l} {\theta Z_{1mk1}^{F} } \\ {\theta Z_{1mk2}^{F} } \\ {\theta Z_{1mk3}^{F} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {S_{1mk1}^{F} \theta X_{1mk1}^{F} } \\ {S_{1mk2}^{F} \theta X_{1mk2}^{F} } \\ {S_{1mk3}^{F} \theta Y_{1mk3}^{F} } \\ \end{array} }} \right] , \end{aligned}$$
(A.11)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{3mk1}^{F} } \\ {\theta X_{3mk2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {1 \big / {\left( {S_{3mk1}^{F} +X_{3m1}^{F} S_{3mk2}^{F} +X_{3m2}^{F} S_{3mk3}^{F} } \right) }} \\ {X_{3m1}^{F} \theta X_{3mk1}^{F} } \\ \end{array} }} \right] ,\hbox {and }k=1,2,3, \end{aligned}$$
(A.12)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta Y_{3mk1}^{F} } \\ {\theta Y_{3mk2}^{F} } \\ {\theta Y_{3mk3}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {R_{3mk1}^{F} \theta X_{3mk1}^{F} } \\ {R_{3mk2}^{F} \theta X_{3mk2}^{F} } \\ {X_{3m2}^{F} \theta X_{3mk1}^{F} } \\ \end{array} }} \right] , \ \left[ {{\begin{array}{l} {\theta Z_{3mk1}^{F} } \\ {\theta Z_{3mk2}^{F} } \\ {\theta Z_{3mk3}^{F} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {S_{3mk1}^{F} \theta X_{3mk1}^{F} } \\ {S_{3mk2}^{F} \theta X_{3mk2}^{F} } \\ {S_{3mk3}^{F} \theta Y_{3mk3}^{F} } \\ \end{array} }} \right] , \end{aligned}$$
(A.13)
$$\begin{aligned} \left[ {{\begin{array}{l} {X_{1m1}^{F} } \\ {X_{1m2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {{-\left( {BM_{1mk1}^{F} BQ_{1mk3}^{F} -BQ_{1mk1}^{F} BM_{1mk3}^{F} } \right) } \big / {\left( {BM_{1mk2}^{F} BQ_{1mk3}^{F} -BQ_{1mk2}^{F} BM_{1mk3}^{F} } \right) }} \\ {{-\left( {BM_{1mk1}^{F} +BM_{1mk2}^{F} X_{1m1}^{F} } \right) } \big / {BM_{1mk3}^{F} }} \\ \end{array} }} \right] , \end{aligned}$$
(A.14)
$$\begin{aligned} \left[ {{\begin{array}{l} {X_{3m1}^{F} } \\ {X_{3m2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {{-\left( {BM_{3mk1}^{F} BQ_{3mk3}^{F} -BQ_{3mk1}^{F} BM_{3mk3}^{F} } \right) } \big / {\left( {BM_{3mk2}^{F} BQ_{3mk3}^{F} -BQ_{3mk2}^{F} BM_{3mk3}^{F} } \right) }} \\ {{-\left( {BM_{3mk1}^{F} +BM_{3mk2}^{F} X_{3m1}^{F} } \right) } \big / {BM_{3mk3}^{F} }} \\ \end{array} }} \right] , \end{aligned}$$
(A.15)
$$\begin{aligned} BM_{1mk1}^{F}= & {} \left\{ {{\begin{array}{l} {{-R_{1mk1}^{F} \alpha _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{1mk1}^{F} \hbox { as }R_{m1}^{F}<0,} \\ {{R_{1mk1}^{F} \alpha _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{1mk1}^{F} \hbox { as }R_{m1}^{F}>0,} \\ \end{array} }} \right. \nonumber \\ BM_{1mk2}^{F}= & {} \left\{ {{\begin{array}{l} {{-R_{1mk2}^{F} \beta _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{1mk2}^{F} \hbox { as }R_{m2}^{F}<0,} \\ {{R_{1mk2}^{F} \beta _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{1mk2}^{F} \hbox { as }R_{m2}^{F}>0,} \\ \end{array} }} \right. \nonumber \\ BM_{1mk3}^{F}= & {} \left\{ {{\begin{array}{l} {{-\gamma _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{1mk3}^{F} \hbox { as }R_{m3}^{F} <0,} \\ {{\gamma _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{1mk3}^{F} \hbox { as }R_{m3}^{F} >0,} \\ \end{array} }} \right. \end{aligned}$$
(A.16)
$$\begin{aligned} BQ_{1mk1}^{F}= & {} \left\{ {{\begin{array}{l} {S_{1mk1}^{F} -{\alpha _{m}^{F} } \big / \phi \hbox { as }R_{m1}^{F}<0,} \\ {S_{1mk1}^{F} +{\alpha _{m}^{F} } \big / \phi \hbox { as }R_{m1}^{F}>0,} \\ \end{array} }} \right. \nonumber \\ BQ_{1mk2}^{F}= & {} \left\{ {{\begin{array}{l} {S_{1mk2}^{F} -{\beta _{m}^{F} } \big / \phi \hbox { as }R_{m2}^{F} <0,} \\ {S_{1mk2}^{F} +{\beta _{m}^{F} } \big / \phi \hbox { as }R_{m2}^{F} >0,} \\ \end{array} }} \right. \nonumber \\ BQ_{1mk3}^{F}= & {} S_{1mk3}^{F} , \end{aligned}$$
(A.17)
$$\begin{aligned} BM_{3mk1}^{F}= & {} \left\{ {{\begin{array}{l} {{R_{3mk1}^{F} \alpha _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{3mk1}^{F} \hbox { as }R_{m1}^{F}<0,} \\ {{-R_{3mk1}^{F} \alpha _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{3mk1}^{F} \hbox { as }R_{m1}^{F}>0,} \\ \end{array} }} \right. \nonumber \\ BM_{3mk2}^{F}= & {} \left\{ {{\begin{array}{l} {{R_{3mk2}^{F} \beta _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{3mk2}^{F} \hbox { as }R_{m2}^{F}<0}, \\ {{-R_{3mk2}^{F} \beta _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{3mk2}^{F} \hbox { as }R_{m2}^{F}>0}, \\ \end{array} }} \right. \nonumber \\ BM_{3mk3}^{F}= & {} \left\{ {{\begin{array}{l} {{\gamma _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{3mk3}^{F} \hbox { as }R_{m3}^{F} <0}, \\ {-{\gamma _{m}^{F} } \big / \phi -\left( {m\pi } \right) S_{3mk3}^{F} \hbox { as }R_{m3}^{F} >0}, \\ \end{array} }} \right. \end{aligned}$$
(A.18)
$$\begin{aligned} BQ_{3mk1}^{F}= & {} \left\{ {{\begin{array}{l} {S_{3mk1}^{F} +{\alpha _{m}^{F} } \big / \phi \hbox { as }R_{m1}^{F}<0,} \\ {S_{3mk1}^{F} -{\alpha _{m}^{F} } \big / \phi \hbox { as }R_{m1}^{F}>0} ,\\ \end{array} }} \right. \nonumber \\ BQ_{3mk2}^{F}= & {} \left\{ {{\begin{array}{l} {S_{3mk2}^{F} +{\beta _{m}^{F} } \big / \phi \hbox { as }R_{m2}^{F} <0}, \\ {S_{3mk2}^{F} -{\beta _{m}^{F} } \big / \phi \hbox { as }R_{m2}^{F} >0}, \\ \end{array} }} \right. \nonumber \\ BQ_{3mk3}^{F}= & {} S_{3mk3}^{F} , \end{aligned}$$
(A.19)
$$\begin{aligned} R_{1mk1}^{F}= & {} R_{3mk1}^{F} =\left\{ {{\begin{array}{l} {-{\left[ {-\alpha _{m11}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+\alpha _{m12}^{F} } \right] } \big / {\left[ {-\beta _{m11}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+\beta _{m12}^{F} } \right] }\hbox { as }R_{m1}^{F}<0}, \\ {-{\left[ {\alpha _{m11}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+\alpha _{m12}^{F} } \right] } \big / {\left[ {\beta _{m11}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+\beta _{m12}^{F} } \right] }\hbox { as }R_{m1}^{F}>0}, \\ \end{array} }} \right. \nonumber \\ R_{1mk2}^{F}= & {} R_{3mk2}^{F} =\left\{ {{\begin{array}{l} {-{\left[ {-\alpha _{m11}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+\alpha _{m12}^{F} } \right] } \big / {\left[ {-\beta _{m11}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+\beta _{m12}^{F} } \right] }\hbox { as }R_{m2}^{F} <0}, \\ {-{\left[ {\alpha _{m11}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+\alpha _{m12}^{F} } \right] } \big / {\left[ {\beta _{m11}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+\beta _{m12}^{F} } \right] }\hbox { as }R_{m2}^{F} >0}, \\ \end{array} }} \right. \end{aligned}$$
(A.20)
$$\begin{aligned} S_{1mk1}^{F}= & {} \left\{ {{\begin{array}{l} {-{\left[ {-a_{m13}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+a_{m14}^{F} +b_{m14}^{F} R_{1mk1}^{F} } \right] } \big / {\left( {c_{m14}^{F} \alpha _{m}^{F} } \right) }\hbox { as }R_{m1}^{F}<0}, \\ {-{\left[ {a_{m13}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+a_{m14}^{F} +b_{m14}^{F} R_{1mk1}^{F} } \right] } \big / {\left( {c_{m14}^{F} \alpha _{m}^{F} } \right) }\hbox { as }R_{m1}^{F}>0}, \\ \end{array} }} \right. \nonumber \\ S_{1mk2}^{F}= & {} \left\{ {{\begin{array}{l} {-{\left[ {-a_{m13}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+a_{m14}^{F} +b_{m14}^{F} R_{1mk2}^{F} } \right] } \big / {\left( {c_{m14}^{F} \beta _{m}^{F} } \right) }\hbox { as }R_{m2}^{F} <0}, \\ {-{\left[ {a_{m13}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+a_{m14}^{F} +b_{m14}^{F} R_{1mk2}^{F} } \right] } \big / {\left( {c_{m14}^{F} \beta _{m}^{F} } \right) }\hbox { as }R_{m2}^{F} >0} ,\\ \end{array} }} \right. \nonumber \\ S_{1mk3}^{F}= & {} -{b_{m14}^{F} } \big / {\left( {c_{m14}^{F} \gamma _{m}^{F} } \right) }, \end{aligned}$$
(A.21)
$$\begin{aligned} S_{3mk1}^{F}= & {} \left\{ {{\begin{array}{l} {{\left[ {-a_{m13}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+a_{m14}^{F} +b_{m14}^{F} R_{3mk1}^{F} } \right] } \big / {\left( {c_{m14}^{F} \alpha _{m}^{F} } \right) }\hbox { as }R_{m1}^{F}<0}, \\ {{\left[ {a_{m13}^{F} \left( {\alpha _{m}^{F} } \right) ^{2}+a_{m14}^{F} +b_{m14}^{F} R_{3mk1}^{F} } \right] } \big / {\left( {c_{m14}^{F} \alpha _{m}^{F} } \right) }\hbox { as }R_{m1}^{F}>0}, \\ \end{array} }} \right. \nonumber \\ S_{3mk2}^{F}= & {} \left\{ {{\begin{array}{l} {{\left[ {-a_{m13}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+a_{m14}^{F} +b_{m14}^{F} R_{3mk2}^{F} } \right] } \big / {\left( {c_{m14}^{F} \beta _{m}^{F} } \right) }\hbox { as }R_{m2}^{F} <0}, \\ {{\left[ {a_{m13}^{F} \left( {\beta _{m}^{F} } \right) ^{2}+a_{m14}^{F} +b_{m14}^{F} R_{3mk2}^{F} } \right] } \big / {\left( {c_{m14}^{F} \beta _{m}^{F} } \right) }\hbox { as }R_{m2}^{F} >0}, \\ \end{array} }} \right. \nonumber \\ S_{3mk3}^{F}= & {} {b_{m14}^{F} } \big / {\left( {c_{m14}^{F} \gamma _{m}^{F} } \right) }. \end{aligned}$$
(A.22)

As \(n=0\), the coefficients of the second and fourth building block are

$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{20k1}^{F} } \\ {\theta X_{20k2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {1 \big / {\left( {R_{20k1}^{F} +X_{201}^{F} R_{20k2}^{F} } \right) }} \\ {X_{201}^{F} \theta X_{20k1}^{F} } \\ \end{array} }} \right] , \ \left[ {{\begin{array}{l} {\theta Y_{20k1}^{F} } \\ {\theta Y_{20k2}^{F} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {R_{20k1}^{F} \theta X_{20k1}^{F} } \\ {R_{20k2}^{F} \theta X_{20k2}^{F} } \\ \end{array} }} \right] ,\hbox { and }k=1,2,3, \end{aligned}$$
(A.23)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{40k1}^{F} } \\ {\theta X_{40k2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {1 \big / {\left( {R_{40k1}^{F} +X_{401}^{F} R_{40k2}^{F} } \right) }} \\ {X_{401}^{F} \theta X_{40k1}^{F} } \\ \end{array} }} \right] , \ \left[ {{\begin{array}{l} {\theta Y_{40k1}^{F} } \\ {\theta Y_{40k2}^{F} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {R_{40k1}^{F} \theta X_{40k1}^{F} } \\ {R_{40k2}^{F} \theta X_{40k2}^{F} } \\ \end{array} }} \right] ,\hbox { and }k=1,2,3, \end{aligned}$$
(A.24)
$$\begin{aligned} X_{201}^{F}= & {} -{BQ_{20k1}^{F} } \big / {BQ_{20k2}^{F} }, \ X_{401}^{F} =-{BQ_{40k1}^{F} } \big / {BQ_{40k2}^{F} }, \end{aligned}$$
(A.25)
$$\begin{aligned} BQ_{20k1}^{F}= & {} \left\{ {{\begin{array}{l} {R_{20k1}^{F} -{\alpha }'{_{n}^{F}} \hbox { as }R_{n1}^{F}<0}, \\ {R_{20k1}^{F} +{\alpha }'{_{n}^{F}} \hbox { as }R_{n1}^{F}>0}, \\ \end{array} }} \right. \ BQ_{20k2}^{F} =\left\{ {{\begin{array}{l} {R_{20k2}^{F} -{\beta }'{_{n}^{F}} \hbox { as }R_{n2}^{F} <0}, \\ {R_{20k2}^{F} +{\beta }'{_{n}^{F}} \hbox { as }R_{n2}^{F} >0}, \\ \end{array} }} \right. \end{aligned}$$
(A.26)
$$\begin{aligned} BQ_{40k1}^{F}= & {} \left\{ {{\begin{array}{l} {R_{40k1}^{F} +{\alpha }'{_{n}^{F}} \hbox { as }R_{n1}^{F}<0,} \\ {R_{40k1}^{F} -{\alpha }'{_{n}^{F}} \hbox { as }R_{n1}^{F}>0}, \\ \end{array} }} \right. \ BQ_{40k2}^{F} =\left\{ {{\begin{array}{l} {R_{40k2}^{F} +{\beta }'{_{n}^{F}} \hbox { as }R_{n2}^{F} <0,} \\ {R_{40k2}^{F} -{\beta }'{_{n}^{F}} \hbox { as }R_{n2}^{F} >0}, \\ \end{array} }} \right. \end{aligned}$$
(A.27)
$$\begin{aligned} R_{20k1}^{F}= & {} \left\{ {{\begin{array}{l} {-{\left[ {-{a}'{_{n13}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\alpha }'{_{n}^{F}} } \right) } \text{ as } R_{n1}^{F}<0,} \\ {-{\left[ {{a}'{_{n13}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\alpha }'{_{n}^{F}} } \right) } \text{ as } R_{n1}^{F} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(A.28)
$$\begin{aligned} R_{20k2}^{F}= & {} {} \left\{ {{\begin{array}{l} {-{\left[ {-{a}'{_{n13}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\beta }'{_{n}^{F}} } \right) } \text{ as } R_{n2}^{F}<0}, \\ {-{\left[ {{a}'{_{n13}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\beta }'{_{n}^{F}} } \right) } \text{ as } R_{n2}^{F} >0}, \\ \end{array} }} \right. \end{aligned}$$
(A.29)
$$\begin{aligned} R_{40k1}^{F}= & {} {} \left\{ {{\begin{array}{l} {{\left[ {-{a}'{_{n13}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\alpha }'{_{n}^{F}} } \right) } \text{ as } R_{n1}^{F}<0} ,\\ {{\left[ {{a}'{_{n13}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\alpha }'{_{n}^{F}} } \right) } \text{ as } R_{n1}^{F} >0}, \\ \end{array} }} \right. \end{aligned}$$
(A.30)
$$\begin{aligned} R_{40k2}^{F}= & {} {} \left\{ {{\begin{array}{l} {{\left[ {-{a}'{_{n13}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\beta }'{_{n}^{F}} } \right) } \text{ as } R_{n2}^{F}<0}, \\ {{\left[ {{a}'{_{n13}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\beta }'{_{n}^{F}} } \right) } \text{ as } R_{n2}^{F} >0.} \\ \end{array} }} \right. \end{aligned}$$
(A.31)

As \(n\ge 1\), the coefficients of the first and third building block are

$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{2nk1}^{F} } \\ {\theta X_{2nk2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {1 \big / {\left( {R_{2nk1}^{F} +X_{2n1}^{F} R_{2nk2}^{F} +X_{2n2}^{F} R_{2nk3}^{F} } \right) }} \\ {X_{2n1}^{F} \theta X_{2nk1}^{F} } \\ \end{array} }} \right] \hbox {, and }k=1,2,3, \end{aligned}$$
(A.32)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta Z_{2nk1}^{F} } \\ {\theta Z_{2nk2}^{F} } \\ {\theta Z_{2nk3}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {S_{2nk1}^{F} \theta X_{2nk1}^{F} } \\ {S_{2nk2}^{F} \theta X_{2nk2}^{F} } \\ {X_{2n2}^{F} \theta X_{2nk1}^{F} } \\ \end{array} }} \right] ,\ \left[ {{\begin{array}{l} {\theta Y_{2nk1}^{F} } \\ {\theta Y_{2nk2}^{F} } \\ {\theta Y_{2nk3}^{F} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {R_{2nk1}^{F} \theta X_{2nk1}^{F} } \\ {R_{2nk2}^{F} \theta X_{2nk2}^{F} } \\ {R_{2nk3}^{F} \theta Z_{2nk3}^{F} } \\ \end{array} }} \right] , \end{aligned}$$
(A.33)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{4nk1}^{F} } \\ {\theta X_{4nk2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {1 \big / {\left( {R_{4nk1}^{F} +X_{4n1}^{F} R_{4nk2}^{F} +X_{4n2}^{F} R_{4nk3}^{F} } \right) }} \\ {X_{4n1}^{F} \theta X_{4nk1}^{F} } \\ \end{array} }} \right] \hbox {, and }k=1,2,3, \end{aligned}$$
(A.34)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta Z_{4nk1}^{F} } \\ {\theta Z_{4nk2}^{F} } \\ {\theta Z_{4nk3}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {S_{4nk1}^{F} \theta X_{4nk1}^{F} } \\ {S_{4nk2}^{F} \theta X_{4nk2}^{F} } \\ {X_{4n2}^{F} \theta X_{4nk1}^{F} } \\ \end{array} }} \right] ,\ \left[ {{\begin{array}{l} {\theta Y_{4nk1}^{F} } \\ {\theta Y_{4nk2}^{F} } \\ {\theta Y_{4nk3}^{F} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {R_{4nk1}^{F} \theta X_{4nk1}^{F} } \\ {R_{4nk2}^{F} \theta X_{4nk2}^{F} } \\ {R_{4nk3}^{F} \theta Z_{4nk3}^{F} } \\ \end{array} }} \right] , \end{aligned}$$
(A.35)
$$\begin{aligned} \left[ {{\begin{array}{l} {X_{2n1}^{F} } \\ {X_{2n2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {{-\left( {BM_{2nk1}^{F} BQ_{2nk3}^{F} -BQ_{2nk1}^{F} BM_{2nk3}^{F} } \right) } \big / {\left( {BM_{2nk2}^{F} BQ_{2nk3}^{F} -BQ_{2nk2}^{F} BM_{2nk3}^{F} } \right) }} \\ {{-\left( {BM_{2nk1}^{F} +BM_{2nk2}^{F} X_{2n1}^{F} } \right) } \big / {BM_{2nk3}^{F} }} \\ \end{array} }} \right] ,\nonumber \\ \end{aligned}$$
(A.36)
$$\begin{aligned} \left[ {{\begin{array}{c} {X_{4n1}^{F} } \\ {X_{4n2}^{F} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {{-\left( {BM_{4nk1}^{F} BQ_{4nk3}^{F} -BQ_{4nk1}^{F} BM_{4nk3}^{F} } \right) } \big / {\left( {BM_{4nk2}^{F} BQ_{4nk3}^{F} -BQ_{4nk2}^{F} BM_{4nk3}^{F} } \right) }} \\ {{-\left( {BM_{4nk1}^{F} +BM_{4nk2}^{F} X_{4n1}^{F} } \right) } \big / {BM_{4nk3}^{F} }} \\ \end{array} }} \right] ,\nonumber \\ \end{aligned}$$
(A.37)
$$\begin{aligned} BM_{2nk1}^{F}= & {} \left\{ {{\begin{array}{l} {-S_{2nk1}^{F} {\alpha }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{2nk1}^{F} \hbox { as }R_{n1}^{F}<0} ,\\ {S_{2nk1}^{F} {\alpha }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{2nk1}^{F} \hbox { as }R_{n1}^{F}>0} ,\\ \end{array} }} \right. \nonumber \\ BM_{2nk2}^{F}= & {} \left\{ {{\begin{array}{l} {-S_{2nk2}^{F} {\beta }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{2nk2}^{F} \hbox { as }R_{n2}^{F}<0} ,\\ {S_{2nk2}^{F} {\beta }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{2nk2}^{F} \hbox { as }R_{n2}^{F}>0} ,\\ \end{array} }} \right. \nonumber \\ BM_{2nk3}^{F}= & {} \left\{ {{\begin{array}{l} {-{\gamma }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{2nk3}^{F} \hbox { as }R_{n3}^{F} <0} ,\\ {{\gamma }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{2nk3}^{F} \hbox { as }R_{n3}^{F} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(A.38)
$$\begin{aligned} BQ_{2nk1}^{F}= & {} \left\{ {{\begin{array}{l} {R_{2nk1}^{F} -{\alpha }'{_{n}^{F}} \hbox { as }R_{n1}^{F}<0} ,\\ {R_{2nk1}^{F} +{\alpha }'{_{n}^{F}} \hbox { as }R_{n1}^{F}>0} ,\\ \end{array} }} \right. \nonumber \\ BQ_{2nk2}^{F}= & {} \left\{ {{\begin{array}{l} {R_{2nk2}^{F} -{\beta }'{_{n}^{F}} \hbox { as }R_{n2}^{F} <0} ,\\ {R_{2nk2}^{F} +{\beta }'{_{n}^{F}} \hbox { as }R_{n2}^{F} >0} ,\\ \end{array} }} \right. \nonumber \\ BQ_{2nk3}^{F}= & {} R_{2nk3}^{F} , \end{aligned}$$
(A.39)
$$\begin{aligned} BM_{4nk1}^{F}= & {} \left\{ {{\begin{array}{l} {S_{4nk1}^{F} {\alpha }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{4nk1}^{F} \hbox { as }R_{n1}^{F}<0} ,\\ {-S_{4nk1}^{F} {\alpha }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{4nk1}^{F} \hbox { as }R_{n1}^{F}>0} ,\\ \end{array} }} \right. \nonumber \\ BM_{4nk2}^{F}= & {} \left\{ {{\begin{array}{l} {S_{4nk2}^{F} {\beta }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{4nk2}^{F} \hbox { as }R_{n2}^{F}<0} ,\\ {-S_{4nk2}^{F} {\beta }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{4nk2}^{F} \hbox { as }R_{n2}^{F}>0} ,\\ \end{array} }} \right. \nonumber \\ BM_{4nk3}^{F}= & {} \left\{ {{\begin{array}{l} {{\gamma }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{4nk3}^{F} \hbox { as }R_{n3}^{F} <0} ,\\ {-{\gamma }'{_{n}^{F}} -\left( {{n\pi } \big / \phi } \right) R_{4nk3}^{F} \hbox { as }R_{n3}^{F} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(A.40)
$$\begin{aligned} BQ_{4nk1}^{F}= & {} \left\{ {{\begin{array}{l} {R_{4nk1}^{F} +{\alpha }'{_{n}^{F}} \hbox { as }R_{n1}^{F}<0} ,\\ {R_{4nk1}^{F} -{\alpha }'{_{n}^{F}} \hbox { as }R_{n1}^{F}>0} ,\\ \end{array} }} \right. \nonumber \\ BQ_{4nk2}^{F}= & {} \left\{ {{\begin{array}{l} {R_{4nk2}^{F} +{\beta }'{_{n}^{F}} \hbox { as }R_{n2}^{F} <0} ,\\ {R_{4nk2}^{F} -{\beta }'{_{n}^{F}} \hbox { as }R_{n2}^{F} >0} ,\\ \end{array} }} \right. \nonumber \\ BQ_{4nk3}^{F}= & {} R_{4nk3}^{F} , \end{aligned}$$
(A.41)
$$\begin{aligned} S_{2nk1}^{F}= & {} S_{4nk1}^{F} =\left\{ {{\begin{array}{l} {{-\left[ {-{\alpha }'{_{n11}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{\alpha }'{_{n12}^{F}} } \right] } \big / {\left[ {-{\beta }'{_{n11}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{\beta }'{_{n12}^{F}} } \right] }\hbox { as }R_{n1}^{F}<0} ,\\ {{-\left[ {{\alpha }'{_{n11}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{\alpha }'{_{n12}^{F}} } \right] } \big / {\left[ {{\beta }'{_{n11}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{\beta }'{_{n12}^{F}} } \right] }\hbox { as }R_{n1}^{F}>0} ,\\ \end{array} }} \right. \nonumber \\ S_{2nk2}^{F}= & {} S_{4nk2}^{F} =\left\{ {{\begin{array}{l} {{-\left[ {-{\alpha }'{_{n11}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{\alpha }'{_{n12}^{F}} } \right] } \big / {\left[ {-{\beta }'{_{n11}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{\beta }'{_{n12}^{F}} } \right] }\hbox { as }R_{n2}^{F} <0} ,\\ {{-\left[ {{\alpha }'{_{n11}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{\alpha }'{_{n12}^{F}} } \right] } \big / {\left[ {{\beta }'{_{n11}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{\beta }'{_{n12}^{F}} } \right] }\hbox { as }R_{n2}^{F} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(A.42)
$$\begin{aligned} R_{2nk1}^{F}= & {} \left\{ {{\begin{array}{l} {-{\left[ {-{a}'{_{n13}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} +{b}'{_{n14}^{F}} S_{2nk1}^{F} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\alpha }'{_{n}^{F}} } \right) }\hbox { as }R_{n1}^{F}<0} ,\\ {-{\left[ {{a}'{_{n13}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} +{b}'{_{n14}^{F}} S_{2nk1}^{F} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\alpha }'{_{n}^{F}} } \right) }\hbox { as }R_{n1}^{F}>0} ,\\ \end{array} }} \right. \nonumber \\ R_{2nk2}^{F}= & {} \left\{ {{\begin{array}{l} {-{\left[ {-{a}'{_{n13}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} +{b}'{_{n14}^{F}} S_{2nk2}^{F} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\beta }'{_{n}^{F}} } \right) }\hbox { as }R_{n2}^{F} <0} ,\\ {-{\left[ {{a}'{_{n13}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} +{b}'{_{n14}^{F}} S_{2nk2}^{F} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\beta }'{_{n}^{F}} } \right) }\hbox { as }R_{n2}^{F} >0} ,\\ \end{array} }} \right. \nonumber \\ R_{2nk3}^{F}= & {} -{{b}'{_{n14}^{F}} } \big / {\left( {{c}'{_{n14}^{F}} {\gamma }'{_{n}^{F}} } \right) } , \end{aligned}$$
(A.43)
$$\begin{aligned} R_{4nk1}^{F}= & {} \left\{ {{\begin{array}{l} {{\left[ {-{a}'{_{n13}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} +{b}'{_{n14}^{F}} S_{4nk1}^{F} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\alpha }'{_{n}^{F}} } \right) }\hbox { as }R_{n1}^{F}<0} ,\\ {{\left[ {{a}'{_{n13}^{F}} \left( {{\alpha }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} +{b}'{_{n14}^{F}} S_{4nk1}^{F} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\alpha }'{_{n}^{F}} } \right) }\hbox { as }R_{n1}^{F}>0} ,\\ \end{array} }} \right. \nonumber \\ R_{4nk2}^{F}= & {} \left\{ {{\begin{array}{l} {{\left[ {-{a}'{_{n13}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} +{b}'{_{n14}^{F}} S_{4nk2}^{F} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\beta }'{_{n}^{F}} } \right) }\hbox { as }R_{n2}^{F} <0} ,\\ {{\left[ {{a}'{_{n13}^{F}} \left( {{\beta }'{_{n}^{F}} } \right) ^{2}+{a}'{_{n14}^{F}} +{b}'{_{n14}^{F}} S_{4nk2}^{F} } \right] } \big / {\left( {{c}'{_{n14}^{F}} {\beta }'{_{n}^{F}} } \right) }\hbox { as }R_{n2}^{F} >0,} \\ \end{array} }} \right. \nonumber \\ R_{4nk3}^{F}= & {} {{b}'{_{n14}^{F}} } \big / {\left( {{c}'{_{n14}^{F}} {\gamma }'{_{n}^{F}} } \right) } . \end{aligned}$$
(A.44)

Appendix B: Constants in the extensional type displacement solution

The constants in the extensional type displacement solutions are listed as follows:

As \(m=0\), the coefficients of the first and third building blocks are

$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{10k1}^{E} } \\ {\theta X_{10k2}^{E} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {1 \big / {\left( {S_{10k1}^{E} +X_{101}^{E} S_{10k2}^{E} } \right) }} \\ {X_{101}^{E} \theta X_{10k1}^{E} } \\ \end{array} }} \right] , \left[ {{\begin{array}{l} {\theta Z_{10k1}^{E} } \\ {\theta Z_{10k2}^{E} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {S_{10k1}^{E} \theta X_{10k1}^{E} } \\ {S_{10k2}^{E} \theta X_{10k2}^{E} } \\ \end{array} }} \right] \hbox {, and }k=1,2,3, \end{aligned}$$
(B.1)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{30k1}^{E} } \\ {\theta X_{30k2}^{E} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {1 \big / {\left( {S_{30k1}^{E} +X_{301}^{E} S_{30k2}^{E} } \right) }} \\ {X_{301}^{E} \theta X_{30k1}^{E} } \\ \end{array} }} \right] , \left[ {{\begin{array}{l} {\theta Z_{30k1}^{E} } \\ {\theta Z_{30k2}^{E} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {S_{30k1}^{E} \theta X_{30k1}^{E} } \\ {S_{30k2}^{E} \theta X_{30k2}^{E} } \\ \end{array} }} \right] \hbox {, and }k=1,2,3, \end{aligned}$$
(B.2)
$$\begin{aligned} X_{101}^{E}= & {} -{BQ_{10k1}^{E} } \big / {BQ_{10k2}^{E} }, X_{301}^{E} =-{BQ_{30k1}^{E} } \big / {BQ_{30k2}^{E} }, \end{aligned}$$
(B.3)
$$\begin{aligned} BQ_{10k1}^{E}= & {} \left\{ {{\begin{array}{l} {-\alpha _{m}^{E} \hbox { as }R_{m1}^{E}<0}, \\ {\alpha _{m}^{E} \hbox { as }R_{m1}^{E}>0}, \\ \end{array} }} \right. BQ_{10k2}^{E} =\left\{ {{\begin{array}{l} {-\beta _{m}^{E} \hbox { as }R_{m2}^{E} <0}, \\ {\beta _{m}^{E} \hbox { as }R_{m2}^{E} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(B.4)
$$\begin{aligned} BQ_{30k1}^{E}= & {} \left\{ {{\begin{array}{l} {\alpha _{m}^{E} \hbox { as, }R_{m1}^{E}<0},\\ {-\alpha _{m}^{E} \hbox { as }R_{m1}^{E}>0} ,\\ \end{array} }} \right. BQ_{30k2}^{E} =\left\{ {{\begin{array}{l} {\beta _{m}^{E} \hbox { as }R_{m2}^{E} <0} ,\\ {-\beta _{m}^{E} \hbox { as }R_{m2}^{E} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(B.5)
$$\begin{aligned} S_{10k1}^{E}= & {} {} \left\{ {{\begin{array}{l} {-{\left[ {-a_{m13}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+a_{m14}^{E} } \right] } \big / {\left( {c_{m14}^{E} \alpha _{m}^{E} } \right) } \text{ as } R_{m1}^{E}<0} ,\\ {-{\left[ {a_{m13}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+a_{m14}^{E} } \right] } \big / {\left( {c_{m14}^{E} \alpha _{m}^{E} } \right) } \text{ as } R_{m1}^{E} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(B.6)
$$\begin{aligned} S_{10k2}^{E}= & {} {} \left\{ {{\begin{array}{l} {-{\left[ {-a_{m13}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+a_{m14}^{E} } \right] } \big / {\left( {c_{m14}^{E} \beta _{m}^{E} } \right) } \text{ as } R_{m2}^{E}<0} ,\\ {-{\left[ {a_{m13}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+a_{m14}^{E} } \right] } \big / {\left( {c_{m14}^{E} \beta _{m}^{E} } \right) } \text{ as } R_{m2}^{E} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(B.7)
$$\begin{aligned} S_{30k1}^{E}= & {} {} \left\{ {{\begin{array}{l} {{\left[ {-a_{m13}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+a_{m14}^{E} } \right] } \big / {\left( {c_{m14}^{E} \alpha _{m}^{E} } \right) } \text{ as } R_{m1}^{E}<0} ,\\ {{\left[ {a_{m13}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+a_{m14}^{E} } \right] } \big / {\left( {c_{m14}^{E} \alpha _{m}^{E} } \right) } \text{ as } R_{m1}^{E} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(B.8)
$$\begin{aligned} S_{30k2}^{E}= & {} {} \left\{ {{\begin{array}{l} {{\left[ {-a_{m13}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+a_{m14}^{E} } \right] } \big / {\left( {c_{m14}^{E} \beta _{m}^{E} } \right) } \text{ as } R_{m2}^{E}<0} ,\\ {{\left[ {a_{m13}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+a_{m14}^{E} } \right] } \big / {\left( {c_{m14}^{E} \beta _{m}^{E} } \right) } \text{ as } R_{m2}^{E} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(B.9)

As \(m\ge 1\), the coefficients of the first and third building blocks are

$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{1mk1}^{E} } \\ {\theta X_{1mk2}^{E} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {1 \big / {\left( {S_{1mk1}^{E} +X_{1m1}^{E} S_{1mk2}^{E} +X_{1m2}^{E} S_{1mk3}^{E} } \right) }} \\ {X_{1m1}^{E} \theta X_{1mk1}^{E} } \\ \end{array} }} \right] \hbox {, and }k=1,2,3, \end{aligned}$$
(B.10)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta Y_{1mk1}^{E} } \\ {\theta Y_{1mk2}^{E} } \\ {\theta Y_{1mk3}^{E} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {R_{1mk1}^{E} \theta X_{1mk1}^{E} } \\ {R_{1mk2}^{E} \theta X_{1mk2}^{E} } \\ {X_{1m2}^{E} \theta X_{1mk1}^{E} } \\ \end{array} }} \right] , \left[ {{\begin{array}{l} {\theta Z_{1mk1}^{E} } \\ {\theta Z_{1mk2}^{E} } \\ {\theta Z_{1mk3}^{E} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {S_{1mk1}^{E} \theta X_{1mk1}^{E} } \\ {S_{1mk2}^{E} \theta X_{1mk2}^{E} } \\ {S_{1mk3}^{E} \theta Y_{1mk3}^{E} } \\ \end{array} }} \right] , \end{aligned}$$
(B.11)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{3mk1}^{E} } \\ {\theta X_{3mk2}^{E} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {1 \big / {\left( {S_{3mk1}^{E} +X_{3m1}^{E} S_{3mk2}^{E} +X_{3m2}^{E} S_{3mk3}^{E} } \right) }} \\ {X_{3m1}^{E} \theta X_{3mk1}^{E} } \\ \end{array} }} \right] \hbox {, and }k=1,2,3, \end{aligned}$$
(B.12)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta Y_{3mk1}^{E} } \\ {\theta Y_{3mk2}^{E} } \\ {\theta Y_{3mk3}^{E} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {R_{3mk1}^{E} \theta X_{3mk1}^{E} } \\ {R_{3mk2}^{E} \theta X_{3mk2}^{E} } \\ {X_{3m2}^{E} \theta X_{3mk1}^{E} } \\ \end{array} }} \right] , \left[ {{\begin{array}{l} {\theta Z_{3mk1}^{E} } \\ {\theta Z_{3mk2}^{E} } \\ {\theta Z_{3mk3}^{E} } \\ \end{array} }} \right] =\left[ {{\begin{array}{l} {S_{3mk1}^{E} \theta X_{3mk1}^{E} } \\ {S_{3mk2}^{E} \theta X_{3mk2}^{E} } \\ {S_{3mk3}^{E} \theta Y_{3mk3}^{E} } \\ \end{array} }} \right] , \end{aligned}$$
(B.13)
$$\begin{aligned} \left[ {{\begin{array}{l} {X_{1m1}^{E} } \\ {X_{1m2}^{E} } \\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {{-\left( {BM_{1mk1}^{E} BQ_{1mk3}^{E} -BQ_{1mk1}^{E} BM_{1mk3}^{E} } \right) } \big / {\left( {BM_{1mk2}^{E} BQ_{1mk3}^{E} -BQ_{1mk2}^{E} BM_{1mk3}^{E} } \right) }} \\ {{-\left( {BM_{1mk1}^{E} +BM_{1mk2}^{E} X_{1m1}^{E} } \right) } \big / {BM_{1mk3}^{E} }} \\ \end{array} }} \right] , \end{aligned}$$
(B.14)
$$\begin{aligned} \left[ {{\begin{array}{l} {X_{3m1}^{E} } ,\\ {X_{3m2}^{E} } ,\\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {{-\left( {BM_{3mk1}^{E} BQ_{3mk3}^{E} -BQ_{3mk1}^{E} BM_{3mk3}^{E} } \right) } \big / {\left( {BM_{3mk2}^{E} BQ_{3mk3}^{E} -BQ_{3mk2}^{E} BM_{3mk3}^{E} } \right) }} ,\\ {{-\left( {BM_{3mk1}^{E} +BM_{3mk2}^{E} X_{3m1}^{E} } \right) } \big / {BM_{3mk3}^{E} }} ,\\ \end{array} }} \right] , \end{aligned}$$
(B.15)
$$\begin{aligned} BM_{1mk1}^{E}= & {} \left\{ {{\begin{array}{l} {{-R_{1mk1}^{E} \alpha _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{1mk1}^{E} \hbox { as }R_{m1}^{E}<0},\\ {{R_{1mk1}^{E} \alpha _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{1mk1}^{E} \hbox { as }R_{m1}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BM_{1mk2}^{E}= & {} \left\{ {{\begin{array}{l} {{-R_{1mk2}^{E} \beta _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{1mk2}^{E} \hbox { as }R_{m2}^{E}<0},\\ {{R_{1mk2}^{E} \beta _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{1mk2}^{E} \hbox { as }R_{m2}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BM_{1mk3}^{E}= & {} \left\{ {{\begin{array}{l} {{-\gamma _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{1mk3}^{E} \hbox { as }R_{m3}^{E}<0},\\ {{\gamma _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{1mk3}^{E} \hbox { as }R_{m3}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BQ_{1mk1}^{E}= & {} \left\{ {{\begin{array}{l} {-\alpha _{m}^{E} \hbox { as }R_{m1}^{E}<0},\\ {\alpha _{m}^{E} \hbox { as }R_{m1}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BQ_{1mk2}^{E}= & {} \left\{ {{\begin{array}{l} {-\beta _{m}^{E} \hbox { as }R_{m2}^{E} <0,} \\ {\beta _{m}^{E} \hbox { as }R_{m2}^{E} >0},\\ \end{array} }} \right. \nonumber \\ BQ_{1mk3}^{E}= & {} 0 \end{aligned}$$
(B.16)
$$\begin{aligned} BM_{3mk1}^{E}= & {} \left\{ {{\begin{array}{l} {{R_{3mk1}^{E} \alpha _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{3mk1}^{E} \hbox { as }R_{m1}^{E}<0},\\ {{-R_{3mk1}^{E} \alpha _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{3mk1}^{E} \hbox { as }R_{m1}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BM_{3mk2}^{E}= & {} \left\{ {{\begin{array}{l} {{R_{3mk2}^{E} \beta _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{3mk2}^{E} \hbox { as }R_{m2}^{E}<0},\\ {-{R_{3mk2}^{E} \beta _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{3mk2}^{E} \hbox { as }R_{m2}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BM_{3mk3}^{E}= & {} \left\{ {{\begin{array}{l} {{\gamma _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{3mk3}^{E} \hbox { as }R_{m3}^{E}<0},\\ {{-\gamma _{m}^{E} } \big / \phi -\left( {m\pi } \right) S_{3mk3}^{E} \hbox { as }R_{m3}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BQ_{3mk1}^{E}= & {} \left\{ {{\begin{array}{l} {\alpha _{m}^{E} \hbox { as }R_{m1}^{E}<0},\\ {-\alpha _{m}^{E} \hbox { as }R_{m1}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BQ_{3mk2}^{E}= & {} \left\{ {{\begin{array}{l} {\beta _{m}^{E} \hbox { as }R_{m2}^{E} <0},\\ {-\beta _{m}^{E} \hbox { as }R_{m2}^{E} >0} \\ \end{array} }} \right. \nonumber \\ BQ_{3mk3}^{E}= & {} 0; \end{aligned}$$
(B.17)
$$\begin{aligned} R_{1mk1}^{E}= & {} R_{3mk1}^{E} =\left\{ {{\begin{array}{l} {-{\left[ {-\alpha _{m11}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+\alpha _{m12}^{E} } \right] } \big / {\left[ {-\beta _{m11}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+\beta _{m12}^{E} } \right] }\hbox { as }R_{m1}^{E}<0},\\ {-{\left[ {\alpha _{m11}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+\alpha _{m12}^{E} } \right] } \big / {\left[ {\beta _{m11}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+\beta _{m12}^{E} } \right] }\hbox { as }R_{m1}^{E}>0,} \\ \end{array} }} \right. \nonumber \\ R_{1mk2}^{E}= & {} R_{3mk2}^{E} =\left\{ {{\begin{array}{l} {-{\left[ {-\alpha _{m11}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+\alpha _{m12}^{E} } \right] } \big / {\left[ {-\beta _{m11}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+\beta _{m12}^{E} } \right] }\hbox { as }R_{m2}^{E} <0,} \\ {-{\left[ {\alpha _{m11}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+\alpha _{m12}^{E} } \right] } \big / {\left[ {\beta _{m11}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+\beta _{m12}^{E} } \right] }\hbox { as }R_{m2}^{E} >0},\\ \end{array} }} \right. \end{aligned}$$
(B.18)
$$\begin{aligned} S_{1mk1}^{E}= & {} \left\{ {{\begin{array}{l} {-{\left[ {-a_{m13}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+a_{m14}^{E} +b_{m14}^{E} R_{1mk1}^{E} } \right] } \big / {\left( {c_{m14}^{E} \alpha _{m}^{E} } \right) }\hbox { as }R_{m1}^{E}<0},\\ {-{\left[ {a_{m13}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+a_{m14}^{E} +b_{m14}^{E} R_{1mk1}^{E} } \right] } \big / {\left( {c_{m14}^{E} \alpha _{m}^{E} } \right) }\hbox { as }R_{m1}^{E}>0},\\ \end{array} }} \right. \nonumber \\ S_{1mk2}^{E}= & {} \left\{ {{\begin{array}{l} {-{\left[ {-a_{m13}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+a_{m14}^{E} +b_{m14}^{E} R_{1mk2}^{E} } \right] } \big / {\left( {c_{m14}^{E} \beta _{m}^{E} } \right) }\hbox { as }R_{m2}^{E} <0,} \\ {-{\left[ {a_{m13}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+a_{m14}^{E} +b_{m14}^{E} R_{1mk2}^{E} } \right] } \big / {\left( {c_{m14}^{E} \beta _{m}^{E} } \right) }\hbox { as }R_{m2}^{E} >0},\\ \end{array} }} \right. \nonumber \\ S_{1mk3}^{E}= & {} -{b_{m14}^{E} } \big / {\left( {c_{m14}^{E} \gamma _{m}^{E} } \right) } , \end{aligned}$$
(B.19)
$$\begin{aligned} S_{3mk1}^{E}= & {} \left\{ {{\begin{array}{l} {{\left[ {-a_{m13}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+a_{m14}^{E} +b_{m14}^{E} R_{3mk1}^{E} } \right] } \big / {\left( {c_{m14}^{E} \alpha _{m}^{E} } \right) }\hbox { as }R_{m1}^{E}<0},\\ {{\left[ {a_{m13}^{E} \left( {\alpha _{m}^{E} } \right) ^{2}+a_{m14}^{E} +b_{m14}^{E} R_{3m11}^{E} } \right] } \big / {\left( {c_{m14}^{E} \alpha _{m}^{E} } \right) }\hbox { as }R_{m1}^{E}>0},\\ \end{array} }} \right. \nonumber \\ S_{3mk2}^{E}= & {} \left\{ {{\begin{array}{l} {{\left[ {-a_{m13}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+a_{m14}^{E} +b_{m14}^{E} R_{3mk2}^{E} } \right] } \big / {\left( {c_{m14}^{E} \beta _{m}^{E} } \right) }\hbox { as }R_{m2}^{E} <0},\\ {{\left[ {a_{m13}^{E} \left( {\beta _{m}^{E} } \right) ^{2}+a_{m14}^{E} +b_{m14}^{E} R_{3mk2}^{E} } \right] } \big / {\left( {c_{m14}^{E} \beta _{m}^{E} } \right) }\hbox { as }R_{m2}^{E} >0},\\ \end{array} }} \right. \nonumber \\ S_{3mk3}^{E}= & {} {b_{m14}^{E} } \big / {\left( {c_{m14}^{E} \gamma _{m}^{E} } \right) } . \end{aligned}$$
(B.20)

As \(n=0\), the coefficients of the second and fourth building blocks are

$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{40k1}^{E} }\\ {\theta X_{40k2}^{E} }\\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {1 \big / {\left( {R_{40k1}^{E} +X_{401}^{E} R_{40k2}^{E} } \right) }}\\ {X_{401}^{E} \theta X_{40k1}^{E} }\\ \end{array} }} \right] , \ \left[ {{\begin{array}{l} {\theta Y_{40k1}^{E} }\\ {\theta Y_{40k2}^{E} }\\ \end{array} }} \right] =\left[ {{\begin{array}{l} {R_{40k1}^{E} \theta X_{40k1}^{E} }\\ {R_{40k2}^{E} \theta X_{40k2}^{E} }\\ \end{array} }} \right] \hbox {, and }k=1,2,3, \end{aligned}$$
(B.21)
$$\begin{aligned} X_{201}^{E}= & {} -{BQ_{20k1}^{E} } \big / {BQ_{20k2}^{E} },\ X_{401}^{E} =-{BQ_{40k1}^{E} } \big / {BQ_{40k2}^{E} }, \end{aligned}$$
(B.22)
$$\begin{aligned} BQ_{20k1}^{E}= & {} \left\{ {{\begin{array}{l} {-{\alpha }'{_{n}^{F}} \hbox { as }R_{n1}^{E}<0},\\ {{\alpha }'{_{n}^{F}} \hbox { as }R_{n1}^{E}>0},\\ \end{array} }} \right. BQ_{20k2}^{E} =\left\{ {{\begin{array}{l} {-{\beta }'{_{n}^{E}} \hbox { as }R_{n2}^{E} <0},\\ {{\beta }'{_{n}^{E}} \hbox { as }R_{n2}^{E} >0},\\ \end{array} }} \right. \end{aligned}$$
(B.23)
$$\begin{aligned} BQ_{40k1}^{E}= & {} \left\{ {{\begin{array}{l} {{\alpha }'{_{n}^{E}} \hbox { as }R_{n1}^{E}<0},\\ {-{\alpha }'{_{n}^{E}} \hbox { as }R_{n1}^{E}>0},\\ \end{array} }} \right. BQ_{40k2}^{E} =\left\{ {{\begin{array}{l} {{\beta }'{_{n}^{E}} \hbox { as }R_{n2}^{E} <0},\\ {-{\beta }'{_{n}^{E}} \hbox { as }R_{n2}^{E} >0},\\ \end{array} }} \right. \end{aligned}$$
(B.24)
$$\begin{aligned} R_{20k1}^{E}= & {} {} \left\{ {{\begin{array}{l} {-{\left[ {-{a}'{_{n13}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\alpha }'{_{n}^{E}} } \right) } \text{ as } R_{n1}^{E}<0},\\ {-{\left[ {{a}'{_{n13}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\alpha }'{_{n}^{E}} } \right) } \text{ as } R_{n1}^{E} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(B.25)
$$\begin{aligned} R_{20k2}^{E}= & {} {} \left\{ {{\begin{array}{l} {-{\left[ {-{a}'{_{n13}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\beta }'{_{n}^{E}} } \right) } \text{ as } R_{n2}^{E}<0} ,\\ {-{\left[ {{a}'{_{n13}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\beta }'{_{n}^{E}} } \right) } \text{ as } R_{n2}^{E} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(B.26)
$$\begin{aligned} R_{40k1}^{E}= & {} {} \left\{ {{\begin{array}{l} {{\left[ {-{a}'{_{n13}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\alpha }'{_{n}^{E}} } \right) } \text{ as } R_{n1}^{E}<0} ,\\ {{\left[ {{a}'{_{n13}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\alpha }'{_{n}^{E}} } \right) } \text{ as } R_{n1}^{E} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(B.27)
$$\begin{aligned} R_{40k2}^{E}= & {} {} \left\{ {{\begin{array}{l} {{\left[ {-{a}'{_{n13}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\beta }'{_{n}^{E}} } \right) } \text{ as } R_{n2}^{E}<0} ,\\ {{\left[ {{a}'{_{n13}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\beta }'{_{n}^{E}} } \right) } \text{ as } R_{n2}^{E} >0} ,\\ \end{array} }} \right. \end{aligned}$$
(B.28)

As \(n\ge 1\), the coefficients of the first and third building blocks are

$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{2nk1}^{E} }\\ {\theta X_{2nk2}^{E} }\\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {1 \big / {\left( {R_{2nk1}^{E} +X_{2n1}^{E} R_{2nk2}^{E} +X_{2n2}^{E} R_{2nk3}^{E} } \right) }}\\ {X_{2n1}^{E} \theta X_{2nk1}^{E} }\\ \end{array} }} \right] \hbox {, and }k=1,2,3, \end{aligned}$$
(B.29)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta Z_{2nk1}^{E} }\\ {\theta Z_{2nk2}^{E} }\\ {\theta Z_{2nk3}^{E} }\\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {S_{2nk1}^{E} \theta X_{2nk1}^{E} }\\ {S_{2nk2}^{E} \theta X_{2nk2}^{E} }\\ {X_{2n2}^{E} \theta X_{2nk1}^{E} }\\ \end{array} }} \right] , \ \left[ {{\begin{array}{l} {\theta Y_{2nk1}^{E} }\\ {\theta Y_{2nk2}^{E} }\\ {\theta Y_{2nk3}^{E} }\\ \end{array} }} \right] =\left[ {{\begin{array}{l} {R_{2nk1}^{E} \theta X_{2nk1}^{E} }\\ {R_{2nk2}^{E} \theta X_{2nk2}^{E} }\\ {R_{2nk3}^{E} \theta Z_{2nk3}^{E} }\\ \end{array} }} \right] , \end{aligned}$$
(B.30)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta X_{4nk1}^{E} }\\ {\theta X_{4nk2}^{E} }\\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {1 \big / {\left( {R_{4nk1}^{E} +X_{4n1}^{E} R_{4nk2}^{E} +X_{4n2}^{E} R_{4nk3}^{E} } \right) }}\\ {X_{4n1}^{E} \theta X_{4nk1}^{E} }\\ \end{array} }} \right] \hbox {, and }k=1,2,3, \end{aligned}$$
(B.31)
$$\begin{aligned} \left[ {{\begin{array}{l} {\theta Z_{4nk1}^{E} }\\ {\theta Z_{4nk2}^{E} }\\ {\theta Z_{4nk3}^{E} }\\ \end{array} }} \right]= & {} \left[ {{\begin{array}{l} {S_{4nk1}^{E} \theta X_{4nk1}^{E} }\\ {S_{4nk2}^{E} \theta X_{4nk2}^{E} }\\ {X_{4n2}^{E} \theta X_{4nk1}^{E} }\\ \end{array} }} \right] , \ \left[ {{\begin{array}{l} {\theta Y_{4nk1}^{E} }\\ {\theta Y_{4nk2}^{E} }\\ {\theta Y_{4nk3}^{E} }\\ \end{array} }} \right] =\left[ {{\begin{array}{l} {R_{4nk1}^{E} \theta X_{4nk1}^{E} }\\ {R_{4nk2}^{E} \theta X_{4nk2}^{E} }\\ {R_{4nk3}^{E} \theta Z_{4nk3}^{E} }\\ \end{array} }} \right] , \end{aligned}$$
(B.32)
$$\begin{aligned} \left[ {{\begin{array}{l} {X_{2n1}^{E} }\\ {X_{2n2}^{E} }\\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {{-\left( {BM_{2nk1}^{E} BQ_{2nk3}^{E} -BQ_{2nk1}^{E} BM_{2nk3}^{E} } \right) } \big / {\left( {BM_{2nk2}^{E} BQ_{2nk3}^{E} -BQ_{2nk2}^{E} BM_{2nk3}^{E} } \right) }}\\ {{-\left( {BM_{2nk1}^{E} +BM_{2nk2}^{E} X_{2n1}^{E} } \right) } \big / {BM_{2nk3}^{E} }}\\ \end{array} }} \right] , \end{aligned}$$
(B.33)
$$\begin{aligned} \left[ {{\begin{array}{l} {X_{4n1}^{E} }\\ {X_{4n2}^{E} }\\ \end{array} }} \right]= & {} \left[ {{\begin{array}{c} {{-\left( {BM_{4nk1}^{E} BQ_{4nk3}^{E} -BQ_{4nk1}^{E} BM_{4nk3}^{E} } \right) } \big / {\left( {BM_{4nk2}^{E} BQ_{4nk3}^{E} -BQ_{4nk2}^{E} BM_{4nk3}^{E} } \right) }}\\ {{-\left( {BM_{4nk1}^{E} +BM_{4nk2}^{E} X_{4n1}^{E} } \right) } \big / {BM_{4nk3}^{E} }},\\ \end{array} }} \right] , \end{aligned}$$
(B.34)
$$\begin{aligned} BM_{2nk1}^{E}= & {} \left\{ {{\begin{array}{l} {-S_{2nk1}^{E} {\alpha }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{2nk1}^{E} \hbox { as }R_{n1}^{E}<0},\\ {S_{2nk1}^{E} {\alpha }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{2nk1}^{E} \hbox { as }R_{n1}^{E}>0,} \nonumber \\ \end{array} }} \right. \nonumber \\ BM_{2nk2}^{E}= & {} \left\{ {{\begin{array}{l} {-S_{2nk2}^{E} {\beta }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{2nk2}^{E} \hbox { as }R_{n2}^{E}<0},\\ {S_{2nk2}^{E} {\beta }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{2nk2}^{E} \hbox { as }R_{n2}^{E}>0},\\ \end{array}}} \right. \nonumber \\ BM_{2nk3}^{E}= & {} \left\{ {{\begin{array}{l} {-{\gamma }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{2nk3}^{E} \hbox { as }R_{n3}^{E}<0},\\ {{\gamma }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{2nk3}^{E} \hbox { as }R_{n3}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BQ_{2nk1}^{E}= & {} \left\{ {{\begin{array}{l} {-{\alpha }'{_{n}^{E}} \hbox { as }R_{n1}^{E}<0},\\ {{\alpha }'{_{n}^{E}} \hbox { as }R_{n1}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BQ_{2nk2}^{E}= & {} \left\{ {{\begin{array}{l} {-\beta _{n}^{E} \hbox { as }R_{n2}^{E} <0},\\ {\beta _{n}^{E} \hbox { as }R_{n2}^{E} >0},\\ \end{array} }} \right. \nonumber \\ BQ_{2nk3}^{E}= & {} 0 \end{aligned}$$
(B.35)
$$\begin{aligned} BM_{4nk1}^{E}= & {} \left\{ {{\begin{array}{l} {S_{4nk1}^{E} {\alpha }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{4nk1}^{E} \hbox { as }R_{n1}^{E}<0},\\ {-S_{4nk1}^{E} {\alpha }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{4nk1}^{E} \hbox { as }R_{n1}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BM_{4nk2}^{E}= & {} \left\{ {{\begin{array}{l} {S_{4nk2}^{E} {\beta }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{4nk2}^{E} \hbox { as }R_{n2}^{E}<0},\\ {-S_{4nk2}^{E} {\beta }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{4nk2}^{E} \hbox { as }R_{n2}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BM_{4nk3}^{E}= & {} \left\{ {{\begin{array}{l} {{\gamma }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{4nk3}^{E} \hbox { as }R_{n3}^{E}<0},\\ {-{\gamma }'{_{n}^{E}} -\left( {{n\pi } \big / \phi } \right) R_{4nk3}^{E} \hbox { as }R_{n3}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BQ_{4nk1}^{E}= & {} \left\{ {{\begin{array}{l} {{\alpha }'{_{n}^{E}} \hbox { as }R_{n1}^{E}<0},\\ {-{\alpha }'{_{n}^{E}} \hbox { as }R_{n1}^{E}>0},\\ \end{array} }} \right. \nonumber \\ BQ_{4nk2}^{E}= & {} \left\{ {{\begin{array}{l} {\beta _{n}^{E} \hbox { as }R_{n2}^{E} <0},\\ {-\beta _{n}^{E} \hbox { as }R_{n2}^{E} >0},\\ \end{array} }} \right. \nonumber \\ BQ_{4nk3}^{E}= & {} 0; \end{aligned}$$
(B.36)
$$\begin{aligned} S_{2nk1}^{E}= & {} S_{4nk1}^{E} =\left\{ {{\begin{array}{l} {-{\left[ {-{\alpha }'{_{n11}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{\alpha }'{_{n12}^{E}} } \right] } \big / {\left[ {-{\beta }'{_{n11}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{\beta }'{_{n12}^{E}} } \right] }\hbox { as }R_{n1}^{E}<0},\\ {-{\left[ {{\alpha }'{_{n11}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{\alpha }'{_{n12}^{E}} } \right] } \big / {\left[ {{\beta }'{_{n11}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{\beta }'{_{n12}^{E}} } \right] }\hbox { as }R_{n1}^{E}>0} \\ \end{array} }} \right. \nonumber \\ S_{2nk2}^{E}= & {} S_{4nk2}^{E} =\left\{ {{\begin{array}{l} {{-\left[ {-{\alpha }'{_{n11}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{\alpha }'{_{n12}^{E}} } \right] } \big / {\left[ {-{\beta }'{_{n11}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{\beta }'{_{n12}^{E}} } \right] }\hbox { as }R_{n2}^{E} <0,} \\ {{-\left[ {{\alpha }'{_{n11}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{\alpha }'{_{n12}^{E}} } \right] } \big / {\left[ {{\beta }'{_{n11}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{\beta }'{_{n12}^{E}} } \right] }\hbox { as }R_{n2}^{E} >0},\\ \end{array} }} \right. \end{aligned}$$
(B.37)
$$\begin{aligned} R_{2nk1}^{E}= & {} \left\{ {{\begin{array}{l} {-{\left[ {-{a}'{_{n13}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} +{b}'{_{n14}^{E}} S_{2nk1}^{E} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\alpha }'{_{n}^{E}} } \right) }\hbox { as }R_{n1}^{E}<0},\\ {-{\left[ {{a}'{_{n13}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} +{b}'{_{n14}^{E}} S_{2nk1}^{E} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\alpha }'{_{n}^{E}} } \right) }\hbox { as }R_{n1}^{E}>0},\\ \end{array} }} \right. \nonumber \\ R_{2nk2}^{E}= & {} \left\{ {{\begin{array}{l} {-{\left[ {-{a}'{_{n13}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} +{b}'{_{n14}^{E}} S_{2nk2}^{E} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\beta }'{_{n}^{E}} } \right) }\hbox { as }R_{n2}^{E} <0,} \\ {-{\left[ {{a}'{_{n13}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} +{b}'{_{n14}^{E}} S_{2nk2}^{E} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\beta }'{_{n}^{E}} } \right) }\hbox { as }R_{n2}^{E} >0},\\ \end{array} }} \right. \nonumber \\ R_{2nk3}^{E}= & {} -{{b}'{_{n14}^{E}} } \big / {\left( {{c}'{_{n14}^{E}} {\gamma }'{_{n}^{E}} } \right) } , \end{aligned}$$
(B.38)
$$\begin{aligned} R_{4nk1}^{E}= & {} \left\{ {{\begin{array}{l} {{\left[ {-{a}'{_{n13}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} +{b}'{_{n14}^{E}} S_{4nk1}^{E} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\alpha }'{_{n}^{E}} } \right) }\hbox { as }R_{n1}^{E}<0},\\ {{\left[ {{a}'{_{n13}^{E}} \left( {{\alpha }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} +{b}'{_{n14}^{E}} S_{4nk1}^{E} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\alpha }'{_{n}^{E}} } \right) }\hbox { as }R_{n1}^{E}>0},\\ \end{array} }} \right. \nonumber \\ R_{4nk2}^{E}= & {} \left\{ {{\begin{array}{l} {{\left[ {-{a}'{_{n13}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} +{b}'{_{n14}^{E}} S_{4nk2}^{E} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\beta }'{_{n}^{E}} } \right) }\hbox { as }R_{n2}^{E} <0,} \\ {{\left[ {{a}'{_{n13}^{E}} \left( {{\beta }'{_{n}^{E}} } \right) ^{2}+{a}'{_{n14}^{E}} +{b}'{_{n14}^{E}} S_{4nk2}^{E} } \right] } \big / {\left( {{c}'{_{n14}^{E}} {\beta }'{_{n}^{E}} } \right) }\hbox { as }R_{n2}^{E} >0},\\ \end{array} }} \right. \nonumber \\ R_{4nk3}^{E}= & {} {{b}'{_{n14}^{E}} } \big / {\left( {{c}'{_{n14}^{E}} {\gamma }'{_{n}^{E}} } \right) } . \end{aligned}$$
(B.39)

Appendix C: Constants of stress components

The constants associated with flexural type stress terms are

$$\begin{aligned} TEX_{1mkj}^{F}= & {} \left( {m\pi } \right) {\bar{r}}_{11} \theta Y_{1mkj}^{F} +\frac{{\bar{r}}_{12} }{\phi }\alpha _{mj}^{F} \theta Z_{1mkj}^{F} , \hbox { as }m=0, TEX_{10k3}^{F} =0, \end{aligned}$$
(C.1)
$$\begin{aligned} TEX_{2nkj}^{F}= & {} {\bar{r}}_{11} {\alpha }'{_{nj}^{F}} \theta Y_{2nkj}^{F} +\frac{{\bar{r}}_{12} }{\phi }\left( {n\pi } \right) \theta Z_{2nkj}^{F} \hbox {, as }n=0, TEX_{20k3}^{F} =0, \end{aligned}$$
(C.2)
$$\begin{aligned} TEX_{3mkj}^{F}= & {} \left( {m\pi } \right) {\bar{r}}_{11} \theta Y_{3mkj}^{F} -\frac{{\bar{r}}_{12} }{\phi }\alpha _{mj}^{F} \theta Z_{3mkj}^{F} ,\hbox { as }m=0, TEX_{30k3}^{F} =0, \end{aligned}$$
(C.3)
$$\begin{aligned} TEX_{4nkj}^{F}= & {} -{\bar{r}}_{11} {\alpha }'{_{nj}^{F}} \theta Y_{4nkj}^{F} +\frac{{\bar{r}}_{12} }{\phi }\left( {n\pi } \right) \theta Z_{4nkj}^{F} \hbox {, as }m=0, TEX_{40k3}^{F} =0, \end{aligned}$$
(C.4)
$$\begin{aligned} TEY_{1mkj}^{F}= & {} \left( {m\pi } \right) {\bar{r}}_{12} \theta Y_{1mkj}^{F} +\frac{{\bar{r}}_{11} }{\phi }\alpha _{mj}^{F} \theta Z_{1mkj}^{F} \hbox {, as }m=0, TEY_{10k3}^{F} =0 \end{aligned}$$
(C.5)
$$\begin{aligned} TEY_{2nkj}^{F}= & {} {\bar{r}}_{12} {\alpha }'{_{nj}^{F}} \theta Y_{2nkj}^{F} +\frac{{\bar{r}}_{11} }{\phi }\left( {n\pi } \right) \theta Z_{2nkj}^{F} \hbox {, as }n=0, TEY_{20k3}^{F} =0, \end{aligned}$$
(C.6)
$$\begin{aligned} TEY_{3mkj}^{F}= & {} \left( {m\pi } \right) {\bar{r}}_{12} \theta Y_{3mkj}^{F} -\frac{{\bar{r}}_{11} }{\phi }\alpha _{mj}^{F} \theta Z_{3mkj}^{F} , \hbox { as }m=0, TEY_{30k3}^{F} =0, \end{aligned}$$
(C.7)
$$\begin{aligned} TEY_{4nkj}^{F}= & {} -{\bar{r}}_{12} {\alpha }'{_{nj}^{F}} \theta Y_{4nkj}^{F} +\frac{{\bar{r}}_{11} }{\phi }\left( {n\pi } \right) \theta Z_{4nkj}^{F} \hbox {, as }m=0, TEY_{40k3}^{F} =0. \end{aligned}$$
(C.8)

The constants associated with extensional type stress terms are

$$\begin{aligned}&TEX_{1mkj}^{E} =\left\{ {{\begin{array}{l} {\left( {m\pi } \right) \theta Y_{1mkj}^{E} +\frac{r_{12} }{\phi }\alpha _{mj}^{E} \theta Z_{1mkj}^{E} +r_{13} \theta X_{1mkj}^{E} \hbox { as }j=1,2,}\\ {\left( {m\pi } \right) \theta Y_{1mkj}^{E} +\frac{r_{12} }{\phi }\alpha _{mj}^{E} \theta Z_{1mkj}^{E} \hbox { as }j=3,}\\ \end{array} }} \right. \hbox { as }m=0 \quad TEX_{10k3}^{F} =0,\nonumber \\ \end{aligned}$$
(C.9)
$$\begin{aligned}&TEX_{2nkj}^{E} =\left\{ {{\begin{array}{l} {{\alpha }'{_{nj}^{E}} \theta Y_{2nkj}^{E} +\frac{r_{12} }{\phi }\left( {n\pi } \right) \theta Z_{2nkj}^{E} +r_{13} \theta X_{2nkj}^{E} \hbox { as }j=1,2,}\\ {{\alpha }'{_{nj}^{E}} \theta Y_{2nkj}^{E} +\frac{r_{12} }{\phi }\left( {n\pi } \right) \theta Z_{2nkj}^{E} \hbox { as }j=3,}\\ \end{array} }} \right. \hbox { as }n=0 \quad TEX_{20k3}^{E} =0,\nonumber \\ \end{aligned}$$
(C.10)
$$\begin{aligned}&TEX_{3mkj}^{E} =\left\{ {{\begin{array}{l} {\left( {m\pi } \right) \theta Y_{3mkj}^{E} -\frac{r_{12} }{\phi }\alpha _{mj}^{E} \theta Z_{3mkj}^{E} +r_{13} \theta X_{3mkj}^{E} \hbox { as }j=1,2},\\ {\left( {m\pi } \right) \theta Y_{3mkj}^{E} -\frac{r_{12} }{\phi }\alpha _{mj}^{E} \theta Z_{3mkj}^{E} \hbox { as }j=3,}\\ \end{array} }} \right. \hbox { as }m=0 \quad TEX_{30k3}^{F} =0,\nonumber \\ \end{aligned}$$
(C.11)
$$\begin{aligned}&TEX_{4nkj}^{E} =\left\{ {{\begin{array}{l} {-{\alpha }'{_{nj}^{E}} \theta Y_{4nkj}^{E} +\frac{r_{12} }{\phi }\left( {n\pi } \right) \theta Z_{4nkj}^{E} +r_{13} \theta X_{4nkj}^{E} \hbox { as }j=1,2,}\\ {-{\alpha }'{_{nj}^{E}} \theta Y_{4nkj}^{E} +\frac{r_{12} }{\phi }\left( {n\pi } \right) \theta Z_{4nkj}^{E} \hbox { as }j=3,}\\ \end{array} }} \right. \hbox { as }m=0 \quad TEX_{40k3}^{E} =0,\nonumber \\ \end{aligned}$$
(C.12)
$$\begin{aligned}&TEY_{1mkj}^{E} =\left\{ {{\begin{array}{l} {\left( {m\pi } \right) r_{12} \theta Y_{1mkj}^{E} +\frac{\alpha _{mj}^{E} }{\phi }\theta Z_{1mkj}^{E} +r_{13} \theta X_{1mkj}^{E} \hbox { as }j=1,2,}\\ {\left( {m\pi } \right) r_{12} \theta Y_{1mkj}^{E} +\frac{\alpha _{mj}^{E} }{\phi }\theta Z_{1mkj}^{E} \hbox { as }j=3,}\\ \end{array} }} \right. \hbox { as }m=0 \quad TEY_{10k3}^{E} =0,\nonumber \\ \end{aligned}$$
(C.13)
$$\begin{aligned}&TEY_{2nkj}^{E} =\left\{ {{\begin{array}{l} {r_{12} {\alpha }'{_{nj}^{E}} \theta Y_{2nkj}^{E} +\frac{\left( {n\pi } \right) }{\phi }\theta Z_{2nkj}^{E} +r_{13} \theta X_{2nkj}^{E} \hbox { as }j=1,2,}\\ {r_{12} {\alpha }'{_{nj}^{E}} \theta Y_{2nkj}^{E} +\frac{\left( {n\pi } \right) }{\phi }\theta Z_{2nkj}^{E} \hbox { as }j=3},\\ \end{array} }} \right. \hbox { as }n=0 \quad TEY_{20k3}^{E} =0,\nonumber \\ \end{aligned}$$
(C.14)
$$\begin{aligned}&TEY_{3mkj}^{E} =\left\{ {{\begin{array}{l} {\left( {m\pi } \right) r_{12} \theta Y_{3mkj}^{E} -\frac{\alpha _{mj}^{E} }{\phi }\theta Z_{3mkj}^{E} +r_{13} \theta X_{3mkj}^{E} \hbox { as }j=1,2,}\\ {\left( {m\pi } \right) r_{12} \theta Y_{3mkj}^{E} -\frac{\alpha _{mj}^{E} }{\phi }\theta Z_{3mkj}^{E} \hbox { as }j=3,}\\ \end{array} }} \right. \hbox { as }m=0 \quad TEY_{30k3}^{E} =0,\nonumber \\ \end{aligned}$$
(C.15)
$$\begin{aligned}&TEY_{4nkj}^{E} =\left\{ {{\begin{array}{l} {-r_{12} {\alpha }'{_{nj}^{E}} \theta Y_{4nkj}^{E} +\frac{\left( {n\pi } \right) }{\phi }\theta Z_{4nkj}^{E} +r_{13} \theta X_{4nkj}^{E} \hbox { as }j=1,2}\\ {-r_{12} {\alpha }'{_{nj}^{E}} \theta Y_{4nkj}^{E} +\frac{\left( {n\pi } \right) }{\phi }\theta Z_{4nkj}^{E} \hbox { as }j=3},\\ \end{array} }} \right. \hbox {, as }m=0, TEY_{40k3}^{E} =0.\nonumber \\ \end{aligned}$$
(C.16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YC., Ma, CC. & Liou, HC. Theoretical analysis and experimental measurement of coupling dynamic characteristics for transversely isotropic rectangular plate based on modified FSDT assumption. Acta Mech 231, 4275–4321 (2020). https://doi.org/10.1007/s00707-020-02746-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02746-z

Navigation