Skip to main content
Log in

Three-dimensional flow structure and mixing of the side thermal buoyant jet discharge in cross-flow

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Numerical investigation of a side thermal buoyant discharge in the cross-flow is presented based on unsteady Reynolds-averaged Navier–Stokes equations closed with the realizable k-\(\upvarepsilon \) turbulence model. Emphasis is placed on the detailed three-dimensional flow evolution and scalar mixing in an incompressible turbulent environment. The present study covers the cases with different jets to cross-flow velocity ratios (R) and initial temperatures. Moreover, various flow characteristics, including vortical structures, jet trajectories, jet streamlines, and intrinsic instabilities, are examined. Mixing ability is quantified by the decay rate of scalar temperatures and velocity magnitude, the probability density function, the spatial mixing deficiencies (SMDs), power spectral density analysis, and temporal mixing deficiencies (TMDs). Comparing the simulation results with the experimental data of Abdelwahed (Surface jets and surface plumes in cross-flows. Ph.D. thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, 1981), it shows good agreement in terms of the temperature half-width and half-thickness profiles, recirculation zone size, and jet trajectory. The numerical results of three-dimensional structures indicate a shear-layer, horseshoe, and surface roller vortices near the side-channel exit and secondary flows after the recirculation zone at the free surface of the main channel. The instantaneous temperature contours exhibit a vortex shedding phenomenon and gaps between the cross-flow and discharge jet at the shear layer. The maximum velocity magnitude location approaches the outer wall toward the main-channel downstream by increasing R. It is found that as the densimetric Froude number (\(\hbox {Fr}_{{0}})\) and R increase, the temperature dilution (S) generally decreases. The statistical analysis of TMD and SMD indicates a direct relationship between the mixing efficiency and buoyancy flux (\({F}_{{0}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

\({\bar{T}}\) :

Temperature (K)

\(T_{k} \) :

Reference temperature

\({T}_{\mathrm {a}}\) :

Temperature in the cross-flow inlet

\({T}_{{0}}\) :

Difference in temperature between the jet and cross-flow

T :

Time-averaged excess temperature

\({T}_{\mathrm {m}}\) :

Maximum time-averaged excess temperature

\({T}_{\mathrm {s}}\) :

Temperature scale

t :

Time

\(\alpha \) :

Probability calculated by PDF

\(\xi \) :

Statistical representation of \(\alpha \)

\({l}_{\mathrm {s}}\) :

Length scale (m)

\({t}_{\mathrm {s}}\) :

Time scale (s)

\(2\eta _{\mathrm{m}} \) :

\({T}_{\mathrm {m}}\) Half-width (m)

\(M_{0} \) :

Flow force in the side-channel inlet (\(\hbox {m}^{{4}}/\hbox {s}^{{2}})\)

\(F_{0} \) :

Buoyancy flux in the side-channel inlet (\(\hbox {m}^{{4}}/\hbox {s}^{{3}})\)

\(\Gamma _{0} \) :

Heat flux in the side-channel inlet (\(\hbox {k} \hbox {m}^{{3}}\hbox {/s}\))

\(\delta _{ij} \) :

Kronecker delta function

\(\nu _{0} \) :

Kinematic viscosity (\(\hbox {m}^{{2}}\hbox {/s}\))

\(\rho _{{0}}\) :

Density of the fluid (\(\hbox {kg/}\hbox {m}^{{3}}\))

\(\mu _{0} \) :

Molecular viscosity (kg/m s)

\(\nu _{\mathrm{t}} \) :

Turbulent viscosity (\(\hbox {m}^{{2}}\hbox {/s}\))

\({\bar{p}}\) :

Pressure

k :

Turbulent kinetic energy

\(\beta \) :

Expansion coefficient (1/K)

\(g_{i} \) :

Gravity acceleration vector in the i-direction (\(\hbox {m/}\hbox {s}^{{2}}\))

R :

Velocity ratio of the jet to the cross-flow

\(\Pr \) :

Prandtl number

\(\Pr _{\mathrm{t}}\) :

Turbulent Prandtl number

\({V}_{{0}}\) :

Streamwise velocity in the side-channel inlet (m/s)

\({A}_{{0}}\) :

Cross-sectional area in the side-channel inlet (\(\hbox {m}^{{2}}\))

d :

Side- and main-channel depth (m)

\(\hbox {Fr}_{{\mathrm{observed}}_{i}}\) :

Experimental results

\(\hbox {Fr}_{{\mathrm{predicted}_{i}}}\) :

Simulation results

U :

Streamwise velocity in the cross-flow inlet (m/s)

\({Q}_{\mathrm {o}}\) :

Flow rate in the side-channel inlet (\(\hbox {m}^{{3}}\hbox {/s}\))

\({C}_{\mathrm {1}}\), \({A}_{\mathrm {s}}\) , \({U}^{{*}}\) :

Related to the turbulence model

\({y}_{\mathrm {m }}\) :

\({x}_{\mathrm {j}}\) Coordinate of \({T}_{\mathrm {m}}\) (m)

\({\bar{u}}_{i} \), \({\bar{u}}_{j} \), \({\bar{u}}_{k}\) :

Velocity components in the i, j, and k direction (m/s)

\({x}_{\mathrm {i}}\), \({x}_{\mathrm {j}}\), \({x}_{\mathrm {k}}\) :

Cartesian coordinates in the i, j, and k direction (m)

\(\lambda _{{2}}\) :

Lambda-2 criterion

n :

Number of data

I :

Spatial index

KK :

Time-series index (s)

References

  1. Choi, K.-H., Young-Ok, K., Joon-Baek, L., Soon-Young, W., Man-Woo, L., Pyung-Gang, L., Dong-Sik, A., Jae-Sang, H., Ho-Young, S.: Thermal impacts of a coal power plant on the plankton in an open coastal water environment. J. Mar. Sci. Technol. 20(2), 187–194 (2012)

    Google Scholar 

  2. Chuang, Y.-L., Hsiao-Hui, Y., Hsing-Juh, L.: Effects of a thermal discharge from a nuclear power plant on phytoplankton and periphyton in subtropical coastal waters. J. Sea Res. 61(4), 197–205 (2009)

    Google Scholar 

  3. Constantinescu, G., Miyawaki, S., Rhoads, B., Sukhodolov, A., Kirkil, G.: Structure of turbulent flow at a river confluence with momentum and velocity ratios close to 1: insight provided by an eddy-resolving numerical simulation. Water Resour. Res. 47(5), W05507 (2011)

    Google Scholar 

  4. Motz, L.H., Benedict, B.A.: Heated surface jet discharged into a flowing ambient stream. Report 4, Department of Environment and Water Resource Engineering, Vanderbilt University, Nashville, Tenn (1970)

  5. Stolzenbach, K.D., Harleman, D.R.F.: An analytical and experimental investigation of surface discharges of heated water. Report 135, Ralph M, Parsons Laboratory for Water Resources and Hydrodynamics, Massachusetts Institute of Technology, Cambridge (1971)

  6. Carter, H.H., Schiemer, E.W., Regier, R.: Buoyant surface jet discharging normal to an ambient flow of various depths. Technical report 81. No. COO-3062-13. Johns Hopkins Univ., Baltimore, Md. (USA). Chesapeake Bay Institute (1973)

  7. Carter, H.H., Regier, R.: Three dimensional heated surface jet in a cross flow. Technical report 88. No. COO-3062-19. Johns Hopkins Univ., Baltimore, Md. (USA). Chesapeake Bay Institute (1974)

  8. Abdelwahed, M.S.T.: Surface jets and surface plumes in cross-flows. Ph.D. thesis, Department of Civil Engineering and Applied Mechanics. McGill University, Montreal, Quebec (1981)

  9. He, S., Xu, Z., Jackson, J.D.: An experimental investigation of buoyancy-opposed wall jet flow. Int. J. Heat Fluid Flow 23(4), 487–496 (2002)

    Google Scholar 

  10. Abessi, O., Saeedi, M., Bleninger, T., Davidson, M.: Surface discharge of negatively buoyant effluent in unstratified stagnant water. J. Hydro-environ. Res. 6(3), 181–193 (2012)

    Google Scholar 

  11. Teng, S., Feng, M., Chen, K., Wang, W., Zheng, B.: Effect of a lateral jet on the turbulent flow characteristics of an open channel flow with rigid vegetation. Water 10(9), 1204 (2018)

    Google Scholar 

  12. Frigo, Arthur A., Frye, D.E.: Physical measurements of thermal discharges into Lake Michigan. No. ANL/ES–16. Argonne National Lab (1972)

  13. Vaillancourt, G., Couture, R.: Influence of heat from the Gentilly nuclear power station on water temperature and Gastropoda. Can. Water Resour. J. 3(3), 121–133 (1978)

    Google Scholar 

  14. Shah, V., Dekhatwala, A., Banerjee, J., Patra, A.K.: Analysis of dispersion of heated effluent from power plant: a case study. Sādhanā 42(4), 557–574 (2017)

    Google Scholar 

  15. Roberts, P.J.W., Snyder, W.H., Baumgartner, D.J.: Ocean outfalls. I: submerged wastefield formation. J. Hydraul. Eng. 115, 1–25 (1989a)

    Google Scholar 

  16. Roberts, P.J.W., Snyder, W.H., Baumgartner, D.J.: Ocean outfalls. II: spatial evolution of submerged wastefield. J. Hydraul. Eng. 115(1), 26–48 (1989)

    Google Scholar 

  17. Roberts, P.J.W., Snyder, W.H., Baumgartner, D.J.: Ocean outfalls. III: effect of diffuser design on submerged wastefield. J. Hydraul. Eng. 115(1), 49–70 (1989)

    Google Scholar 

  18. Jirka, G.H., Doneker, R.L., Hinton, S.W.: User’s manual for CORMIX: a hydrodynamic mixing zone model and decision support system for pollutant discharges into surface waters. US Environmental Protection Agency, Office of Science and Technology (1996)

  19. Frick, W.E., Roberts, P.J.W., Davis, L.R., Keyes, J., Baumgartner, D.J., George, K.P.: Dilution models for effluent discharges. Visual Plumes, EPA/600/R-03 25 (2003)

  20. Palomar, P., Lara, J.L., Losada, I.J.: Near field brine discharge modeling part 2: validation of commercial tools. Desalination 290, 28–42 (2012)

    Google Scholar 

  21. Palomar, P., Lara, J.L., Losada, I.J., Rodrigo, M., Alvárez, A.: Near field brine discharge modelling part 1: analysis of commercial tools. Desalination 290, 14–27 (2012)

    Google Scholar 

  22. Doneker, R.L., Ramachandran, A.S., Opila, F.: Multiport diffuser design for a negatively buoyant discharge. In: World Environmental and Water Resources Congress 2017, pp. 97–111 (2017)

  23. Tang, H.S., Paik, J., Sotiropoulos, F., Khangaonkar, T.: Three-dimensional numerical modeling of initial mixing of thermal discharges at real-life configurations. J. Hydraul. Eng. 134(9), 1210–1224 (2008)

    Google Scholar 

  24. Hwang, R.R., Yang, W.C., Chiang, T.P.: Effect of ambient stratification on buoyant jets in cross-flow. Int. J. Multiph. Flow 22(S1), 125–126 (1996)

    Google Scholar 

  25. Yuan, L.L., Street, R.L.: Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10(9), 2323–2335 (1998)

    Google Scholar 

  26. Valero, D., Bung, D.B.: Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow. Environ. Model. Softw. 82, 218–228 (2016)

    Google Scholar 

  27. Muppidi, S., Mahesh, K.: Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81–100 (2005)

    MATH  Google Scholar 

  28. Paik, J.: Numerical simulation of thermal discharges in crossflow. In: 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 328–332. IEEE (2011)

  29. Yan, X., Mohammadian, A.: Numerical modeling of vertical buoyant jets subjected to lateral confinement. J. Hydraul. Eng. 143(7), 04017016 (2017)

    Google Scholar 

  30. Guan, H., Wu, C.J.: Large-eddy simulations and vortex structures of turbulent jets in crossflow. Sci. China Ser. G 50(1), 118–132 (2007)

    MATH  Google Scholar 

  31. Zhang, L., Yang, V.: Flow dynamics and mixing of a transverse jet in crossflow-part I: steady crossflow. J. Eng. Gas Turbines Power 139(8), 082601 (2017)

    MathSciNet  Google Scholar 

  32. Xiao, J., Travis, J.R., Breitung, W.: Non-Boussinesq integral model for horizontal turbulent buoyant round jets. Sci. Technol. Nucl. Install. 2009, 10 (2009)

    Google Scholar 

  33. Alfaifi, H., Mohammadian, A., Kheirkhah Gildeh, H.: Experimental and numerical study of thermal buoyant wall jet in calm ambient water. In: 22nd Canadian Hydrotechnical Conference, Montreal, Quebec, April 29–May 2 (2015)

  34. Kheirkhah Gildeh, H., Mohammadian, A., Nistor, I., Qiblawey, H.: Numerical modeling of turbulent buoyant wall jets in stationary ambient water. J. Hydraul. Eng. 140(6), 04014012 (2014)

    Google Scholar 

  35. Huai, W., Li, Z., Qian, Z., Zeng, Y., Han, J., Peng, W.: Numerical simulation of horizontal buoyant wall jet. J. Hydrodyn. 22(1), 58–65 (2010)

    Google Scholar 

  36. McGuirk, J.J., Rodi, W.: A depth-averaged mathematical model for the near field of side discharges into open-channel flow. J. Fluid Mech. 86(4), 761–781 (1978)

    MATH  Google Scholar 

  37. McGuirk, J.J., Rodi, W.: Mathematical modelling of three-dimensional heated surface jets. J. Fluid Mech. 95(4), 609–633 (1979)

    MATH  Google Scholar 

  38. Wang, X., Cheng, L.: Three-dimensional simulation of a side discharge into a cross channel flow. Comput. Fluids 29(4), 415–433 (2000)

    MATH  Google Scholar 

  39. Yu, L., Righetto, A.M.: Depth-averaged turbulence k–w model and applications. Adv. Eng. Softw. 32(5), 375–394 (2001)

    MATH  Google Scholar 

  40. Craft, T.J., Gerasimov, A.V., Iacovides, H., Kidger, J.W., Launder, B.E.: The negatively buoyant turbulent wall jet: performance of alternative options in RANS modelling. Int. J. Heat Fluid Flow 25(5), 809–823 (2004)

    Google Scholar 

  41. Addad, Y., Benhamadouche, S., Laurence, D.: The negatively buoyant wall-jet: LES results. Int. J. Heat Fluid Flow 25(5), 795–808 (2004)

    Google Scholar 

  42. Kim, D.G., Cho, H.Y.: Modeling the buoyant flow of heated water discharged from surface and submerged side outfalls in shallow and deep water with a cross flow. Environ. Fluid Mech. 6(6), 501–518 (2006)

    Google Scholar 

  43. Peng, Y., Zhou, J.G., Burrows, R.: Modelling solute transport in shallow water with the lattice Boltzmann method. Comput. Fluids 50(1), 181–188 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Tay, H.W., Bryan, K.R., de Lange, W.P., Pilditch, C.A.: The hydrodynamics of the southern basin of Tauranga Harbour. NZ J. Mar. Freshw. Res. 47(2), 249–274 (2013)

    Google Scholar 

  45. Penna, N., De Marchis, M., Canelas, O.B., Napoli, E., Cardoso, A.H., Gaudio, R.: Effect of the junction angle on turbulent flow at a hydraulic confluence. Water 10(4), 469 (2018)

    Google Scholar 

  46. Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J.: A new k-\(\epsilon \) eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 24(3), 227–238 (1995)

    MATH  Google Scholar 

  47. Frank, M., White, F.M., Corfield, I.: Viscous Fluid Flow, vol. 3. McGraw-Hill, New York (2006)

    Google Scholar 

  48. Oliveira, J., Raad, I., Issa, P.: An improved PISO algorithm for the computation of buoyancy-driven flows. Numer. Heat Transf. Part B Fundam. 40(6), 473–493 (2001)

    Google Scholar 

  49. Miller, F.J., Poisson, A.: International one-atmosphere equation of state of seawater. Deep Sea Res. Part A Oceanogr. Res. Pap. 28(6), 625–629 (1981)

    Google Scholar 

  50. Henkes, R.A.W.M., Van Der Vlugt, F.F., Hoogendoorn, C.J.: Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models. Int. J. Heat Mass Transf. 34(2), 377–388 (1991)

    Google Scholar 

  51. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    MathSciNet  MATH  Google Scholar 

  52. Weber, L.J., Schumate, E.D., Mawer, N.: Experiments on flow at a 90 open-channel junction. J. Hydraul. Eng. 127(5), 340–350 (2001)

    Google Scholar 

  53. Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pp. 263–270. ACM, (1993)

  54. Webber, N.B., Greated, C.A.: An investigation of flow behaviour at the junction of rectangular channels. Proc. Inst. Civ. Eng. 34(3), 321–334 (1966)

    Google Scholar 

  55. Shukry, A.: Flow around bends in an open flume. Trans. ASCE 115, 751–779 (1950)

    Google Scholar 

  56. Best, James Leonard.: Flow dynamics and sediment transport at river channel confluences. PhD diss., Birkbeck (University of London), (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitra Javan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, M., Javan, M. Three-dimensional flow structure and mixing of the side thermal buoyant jet discharge in cross-flow. Acta Mech 231, 3729–3753 (2020). https://doi.org/10.1007/s00707-020-02700-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02700-z

Keywords

Navigation