Skip to main content
Log in

Numerical and applied results of the analysis of singular solutions for a closed wedge consisting of two dissimilar materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper considers solutions that can determine the nature of the stress singularity in the vicinity of a singular point for two-dimensional and three-dimensional closed composite wedges. A comparative analysis of stress singularity exponents is carried out for closed composite wedges with perfectly bonded interfaces and homogeneous wedges with stress-free edges. Using analysis results, it is possible to evaluate a change in the nature of the stress singularity near the crack tip when the crack cavity is filled with a certain material. Results were obtained for different ratios of the wedge component’s opening angles, different values of elastic moduli, and different Poisson ratios of the wedge’s constituent materials. The anomalous nature of changes in singular solutions for a composite closed wedge is established for Poisson’s ratios of the wedge part corresponding to a weakly compressible or incompressible material. In the context of the model and applied problems, it is shown that the use of eigensolutions for composite wedges makes it possible to find material characteristics that ensure maximum reduction in the stress concentration near the crack tip in the case of the crack cavity being filled with a certain material. The dependence of these solutions on the Poisson ratio demonstrates a significant reduction in stress concentration at sufficiently large crack opening angles and at low rigidity of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baladi, A., Arezoodar, A.: Dissimilar materials joint and effect of angle junction on stress distribution at interface. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 5(7), 1184–1187 (2011)

    Google Scholar 

  2. Baryakh, A.A., Lobanov, S.Y., Lomakin, I.S.: Analysis of time-to-time variation of load on interchamber pillars in mines of the upper kama potash salt deposit. J. Min. Sci. 51(4), 696–706 (2015). https://doi.org/10.1134/S1062739115040064

    Article  Google Scholar 

  3. Becker, E.B., Dunham, R.S., Stern, M.: Some stress intensity calculations using finite elements. In: Pulmans V.A., Kabaila A.P. (eds.) Finite Element Methods in Engineering, Proceedings of the 1974 International Conference on Finite Element Methods in Engineering. The School of Civil Engineering, pp. 117–138. The University of New South Wales, Unisearch Ltd., Kensington (1974)

  4. Bogy, D., Wang, K.: Stress singularities at interface corners in bonded dissimilar isotropic elastic materials. Int. J. Solids Struct. 7(8), 993–1005 (1971). https://doi.org/10.1016/0020-7683(71)90077-1

    Article  MATH  Google Scholar 

  5. Bogy, D.B.: Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. ASME J. Appl. Mech. 35(3), 460–466 (1968). https://doi.org/10.1115/1.3601236

    Article  MathSciNet  MATH  Google Scholar 

  6. Carpinteri, A., Paggi, M.: Asymptotic analysis in linear elasticity: from the pioneering studies by wieghardt and irwin until today. Eng. Fract. Mech. 76(12), 1771–1784 (2009). https://doi.org/10.1016/j.engfracmech.2009.03.012

    Article  Google Scholar 

  7. Chen, D.H., Nisitani, H.: Singular stress field near the corner of jointed dissimilar materials. ASME J. Appl. Mech. 60(3), 607–613 (1993). https://doi.org/10.1115/1.2900847

    Article  MATH  Google Scholar 

  8. Chobanyan, K.: Stress State in Compound Elastic Bodies. Armenian Academy of Sciences Press, Yerevan (1987)

    Google Scholar 

  9. Dempsey, J.P., Sinclair, G.B.: On the singular behavior at the vertex of a bi-material wedge. J. Elast. 11(3), 317–327 (1981). https://doi.org/10.1007/BF00041942

    Article  MathSciNet  MATH  Google Scholar 

  10. Dundurs, J.: Discussion: edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading (Bogy, D. B., 1968, ASME J. Appl. Mech., 35, pp. 460–466). ASME J. Appl. Mech. 36(3), 650–652 (1969). https://doi.org/10.1115/1.3564739

    Article  Google Scholar 

  11. Fedorov, A.Y., Matveenko, V.P.: Optimization of geometry and mechanical characteristics of elastic bodies in the vicinity of singular points. Acta Mech. 229(2), 645–658 (2018). https://doi.org/10.1007/s00707-017-1990-5

    Article  MathSciNet  Google Scholar 

  12. Fedorov, A.Y., Matveenko, V.P., Shardakov, I.N.: Numerical analysis of stresses in the vicinity of internal singular points in polymer composite materials. Int. J. Civil Engi. Technol. (IJCIET) 9(8), 1062–1075 (2018). https://www.iaeme.com/MasterAdmin/Journal_uploads/IJCIET/VOLUME_9_ISSUE_8/IJCIET_09_08_107.pdf

  13. Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Auxetic mechanics of crystalline materials. Mech. Solids 45(4), 529–545 (2010). https://doi.org/10.3103/S0025654410040047

    Article  Google Scholar 

  14. Huang, C., Leissa, A.: Stress singularities in bimaterial bodies of revolution. Compos. Struct. 82(4), 488–498 (2008). https://doi.org/10.1016/j.compstruct.2007.01.026

    Article  Google Scholar 

  15. Kondrat’ev, V.: Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Mosc. Math. Soc. 16, 227–313 (1967)

    MathSciNet  MATH  Google Scholar 

  16. Lang, T., Mallick, P.: Effect of spew geometry on stresses in single lap adhesive joints. Int. J. Adhes. Adhes. 18(1), 167–177 (1998). https://doi.org/10.1016/S0143-7496(97)00056-0

    Article  Google Scholar 

  17. Leguillon, D., Sanchez-Palencia, E.: Computation of Singular Solutions in Elliptic Problems and Elasticity. John Wiley & Sons Inc., New York (1987)

    MATH  Google Scholar 

  18. Mihailov, S.: Stress singularity in the vicinity of an angle edge in an anisotropic composite and some applications to fibrous composites. Izv. Acad. Sci. USSR. Mechanica Twerdogo Tela 5, 103–110 (1979)

    Google Scholar 

  19. Paggi, M., Carpinteri, A.: On the stress singularities at multimaterial interfaces and related analogies with fluid dynamics and diffusion. ASME Appl. Mech. Rev. 61(2), 020801 (2008). https://doi.org/10.1115/1.2885134

    Article  MATH  Google Scholar 

  20. Parton, V., Perlin, P.: Methods of Mathematical Theory of Elasticity. Nauka, Moscow (1981)

    MATH  Google Scholar 

  21. Pook, L.P.: A 50-year retrospective review of three-dimensional effects at cracks and sharp notches. Fatigue Fract. Eng. Mate. Struct. 36(8), 699–723 (2013). https://doi.org/10.1111/ffe.12074

    Article  Google Scholar 

  22. Raju, I., Crews, J.H.: Interlaminar stress singularities at a straight free edge in composite laminates. Comput. Struct. 14(1), 21–28 (1981). https://doi.org/10.1016/0045-7949(81)90079-1

    Article  Google Scholar 

  23. Sinclair, G.: Stress singularities in classical elasticity-ii: asymptotic identification. ASME Appl. Mech. Rev. 57(5), 385–439 (2004). https://doi.org/10.1115/1.1767846

    Article  Google Scholar 

  24. Theocaris, P.S.: The order of singularity at a multi-wedge corner of a composite plate. Int. J. Eng. Sci. 12(2), 107–120 (1974). https://doi.org/10.1016/0020-7225(74)90011-1

    Article  MATH  Google Scholar 

  25. Theocaris, P.S., Gdoutos, E.E., Thireos, C.G.: Stress singularities in a biwedge under various boundary conditions. Acta Mech. 29(1), 55–73 (1978). https://doi.org/10.1007/BF01176627

    Article  MATH  Google Scholar 

  26. Tsai, M., Morton, J.: The effect of a spew fillet on adhesive stress distributions in laminated composite single-lap joints. Compos. Struct. 32(1–4), 123–131 (1995). https://doi.org/10.1016/0263-8223(95)00059-3

    Article  Google Scholar 

  27. Wang, P., Xu, L.: Convex interfacial joints with least stress singularities in dissimilar materials. Mech. Mater. 38(11), 1001–1011 (2006). https://doi.org/10.1016/j.mechmat.2005.10.002

    Article  Google Scholar 

  28. Williams, M.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. ASME J. Appl. Mech. 19(4), 526–528 (1952)

    Google Scholar 

  29. Wu, Z.: Design free of stress singularities for bi-material components. Compos. Struct. 65(3–4), 339–345 (2004). https://doi.org/10.1016/j.compstruct.2003.11.009

    Article  Google Scholar 

  30. Xu, L., Kuai, H., Sengupta, S.: Dissimilar material joints with and without free-edge stress singularities: part i. a biologically inspired design. Exp. Mech. 44(6), 608–615 (2004). https://doi.org/10.1007/BF02428250

    Article  Google Scholar 

  31. Xu, L.R., Sengupta, S.: Dissimilar material joints with and without free-edge stress singularities: part ii. an integrated numerical analysis. Exp. Mech. 44(6), 616–621 (2004). https://doi.org/10.1007/BF02428251

    Article  Google Scholar 

  32. Zheng, Q.S., Chen, T.: New perspective on poisson’s ratios of elastic solids. Acta Mech. 150(3), 191–195 (2001). https://doi.org/10.1007/BF01181811

    Article  MATH  Google Scholar 

  33. Zhigalkin, V.M., Usol’tseva, O.M., Semenov, V.N., Tsoi, P.A., Asanov, V.A., Baryakh, A.A., Pan’kov, I.L., Toksarov, V.N.: Deformation of quasi-plastic salt rocks under different conditions of loading. report i: deformation of salt rocks under uniaxial compression. J. Min. Sci. 41(6), 507–515 (2005). https://doi.org/10.1007/s10913-006-0013-z

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Russian Science Foundation (Project 19-77-30008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Yu. Fedorov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, A.Y., Matveenko, V.P. Numerical and applied results of the analysis of singular solutions for a closed wedge consisting of two dissimilar materials. Acta Mech 231, 2711–2721 (2020). https://doi.org/10.1007/s00707-020-02668-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02668-w

Navigation