Skip to main content
Log in

In-plane responses of multilayer FG-GPLRC curved beams in thermal environment under moving load

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

As a first attempt, the transient in-plane responses of multilayer functionally graded graphene platelet-reinforced composite (FG-GPLRC) curved beams in thermal environment under a concentrated moving load are investigated. The motion equations are derived based on the first-order shear deformation theory by considering the influences of the initial thermal stresses. The Chebyshev–Ritz method together with Newmark’s time integration scheme is employed to solve the equations of motion with different sets of boundary conditions. In this regard, the Chebyshev polynomials in conjunction with suitable boundary functions are used to construct the admissible functions of the field variables. Each layer is built up from an isotropic homogeneous polymer matrix reinforced by uniformly distributed and randomly oriented graphene platelets (GPLs). The multilayer FG-GPLRC curved beams are composed of a sufficient number of GPL-reinforced layers to create gradation without abrupt change in their material properties along the beam thickness direction. After validating the approach, the effects of moving load velocity, the GPL weight fraction and through-the-thickness distributions, total number of GPLRC curved beam layers, the curved beam geometric parameters, thermal environment and edge boundary conditions on the dynamic behavior of FG-GPLRC curved beams subjected to a moving load are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee, S.Y., Hsiao, J.Y.: Free in-plane vibrations of curved nonuniform beams. Acta Mech. 155, 173–189 (2002)

    MATH  Google Scholar 

  2. Malekzadeh, P., Setoodeh, A.R., Barmshouri, E.: A hybrid layerwise and differential quadrature method for in-plane free vibration of laminated thick circular arches. J. Sound Vib. 315, 212–225 (2008)

    Google Scholar 

  3. Malekzadeh, P., Atashi, M.M., Karami, G.: In-plane free vibration of functionally graded circular arches with temperature-dependent properties under thermal environment. J. Sound Vib. 326, 837–851 (2009)

    Google Scholar 

  4. Lee, S.Y., Yan, Q.Z.: An analytical solution for out-of-plane deflection of a curved Timoshenko beam with strong nonlinear boundary conditions. Acta Mech. 226, 3679–3694 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Poortabib, A.: Critical buckling load of curved sandwich beams with composite skins subjected to uniform pressure load. J. Braz. Soc. Mech. Sci. Eng. 38, 1805–1816 (2016)

    Google Scholar 

  6. Mohamed, N., Eltaher, M.A., Mohamed, S.A., Seddek, L.F.: Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations. Int. J. Non Linear Mech. 101, 157–173 (2018)

    Google Scholar 

  7. Babaei, H., Kiani, Y., Eslami, M.R.: Geometrically nonlinear analysis of shear deformable FGM shallow pinned arches on nonlinear elastic foundation under mechanical and thermal loads. Acta Mech. 229, 3123–3141 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Ghuku, S., Saha, K.: Theoretical and experimental free vibration analysis of a loaded curved beam with moving boundaries: vibration analysis of beam with moving boundaries. Int. J. Manuf. Mater. Mech. Eng. 9, 44–67 (2019)

    Google Scholar 

  9. Sarparast, H., Ebrahimi-Mamaghani, A.: Vibrations of laminated deep curved beams under moving loads. Compos. Struct. 226, 111262 (2019)

    Google Scholar 

  10. Gnecco, E., Meyer, E.: Fundamentals of Frictions and Wear at the Nanoscale, pp. 583–600. Springer, Berlin (2007)

    Google Scholar 

  11. Arash, B., Wang, Q., Varadan, V.K.: Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 4, 6479 (2014)

    Google Scholar 

  12. Shen, M.Y., Chang, T.Y., Hsieh, T.H., Li, Y.L., Chiang, C.L., Yang, H., Yip, M.C.: Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites. J. Nanomater. 2013, 9 (2013)

    Google Scholar 

  13. Shiu, S.C., Tsai, J.L.: Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos. Part B 56, 691–697 (2014)

    Google Scholar 

  14. Spanos, K.N., Georgantzinos, S.K., Anifantis, N.K.: Mechanical properties of graphene nanocomposites: a multiscale finite element prediction. Compos. Struct. 132, 536–544 (2015)

    Google Scholar 

  15. Wang, Y., Yu, J., Dai, W., Song, Y., Wang, D., Zeng, L., Jiang, N.: Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. Polym. Compos. 36, 556–565 (2015)

    Google Scholar 

  16. Atif, R., Shyha, I., Inam, F.: Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites-A review. Polym. 8, 281 (2016)

    Google Scholar 

  17. Young, R.J., Liu, M., Kinloch, I.A., Li, S., Zhao, X., Vallés, C., Papageorgiou, D.G.: The mechanics of reinforcement of polymers by graphene nanoplatelets. Compos. Sci. Technol. 154, 110–116 (2018)

    Google Scholar 

  18. Mazilova, T.I., Sadanov, E.V., Mikhailovskij, I.M.: Tensile strength of graphene nanoribbons: an experimental approach. Mater. Lett. 242, 17–19 (2019)

    Google Scholar 

  19. Cao, H.C., Liang, Y.L.: The microstructures and mechanical properties of graphene-reinforced titanium matrix composites. J. Alloys Compd. 812, 152057 (2020)

    Google Scholar 

  20. Sobhy, M.: Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions. Acta Mech. 225, 2521–2538 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Yang, J., Wu, H., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)

    Google Scholar 

  22. Liu, D., Kitipornchai, S., Chen, W., Yang, J.: Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Compos. Struct. 189, 560–569 (2018)

    Google Scholar 

  23. Cong, P.H., Duc, N.D.: New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment. Acta Mech. 229, 3651–3670 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Malekzadeh, P., Setoodeh, A.R., Shojaee, M.: Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method. Comput. Methods Appl. Mech. Eng. 340, 451–479 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Song, M., Gong, Y., Yang, J., Zhu, W., Kitipornchai, S.: Free vibration and buckling analyses of edge-cracked functionally graded multilayer graphene nanoplatelet-reinforced composite beams resting on an elastic foundation. J. Sound Vib. 458, 89–108 (2019)

    Google Scholar 

  26. Heydarpour, Y., Malekzadeh, P., Gholipour, F.: Thermoelastic analysis of FG-GPLRC spherical shells under thermo-mechanical loadings based on Lord–Shulman theory. Compos. Part B 164, 400–424 (2019)

    Google Scholar 

  27. Ghorbani, S.A., Malekzadeh, P., Ziaee, S.: Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos. Struct. 162, 325–340 (2017)

    Google Scholar 

  28. Pramod, K.P., Subba Rao, V.V., Sarath, C.S.: Deflection behavior of carbon nanotube reinforced polymer composite beams using first order shear deformation theory. Mater. Today Proc. 5, 26836–26842 (2018)

    Google Scholar 

  29. Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017)

    Google Scholar 

  30. Wu, H., Yang, J., Kitipornchai, S.: Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos. Struct. 162, 244–254 (2017)

    Google Scholar 

  31. Shahrjerdi, A., Yavari, S.: Free vibration analysis of functionally graded graphene-reinforced nanocomposite beams with temperature-dependent properties. J. Braz. Soc. Mech. Sci. Eng. 40, 25 (2018)

    Google Scholar 

  32. Khosravi, S., Arvin, H., Kiani, Y.: Interactive thermal and inertial buckling of rotating temperature-dependent FG-CNT reinforced composite beams. Compos. Part B 175, 107178 (2019)

    Google Scholar 

  33. Wang, Y., Feng, C., Santiuste, C., Zhao, Z., Yang, J.: Buckling and postbuckling of dielectric composite beam reinforced with graphene platelets (GPLs). Aerosp. Sci. Technol. 91, 208–218 (2019)

    Google Scholar 

  34. Shi, Z., Yao, X., Pang, F., Wang, Q.: A semi-analytical solution for in-plane free vibration analysis of functionally graded carbon nanotube reinforced composite circular arches with elastic restraints. Compos. Struct. 182, 420–434 (2017)

    Google Scholar 

  35. Karami, B., Janghorban, M., Shahsavari, D., Dimitri, R., Tornabene, F.: Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes. Molecules 24, 2750 (2019)

    Google Scholar 

  36. Huang, Y., Yang, Z., Liu, A., Fu, J.: Nonlinear buckling analysis of functionally graded graphene reinforced composite shallow arches with elastic rotational constraints under uniform radial load. Materials 11, 910 (2018)

    Google Scholar 

  37. Yang, Z., Yang, J., Liu, A., Fu, J.: Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches. Compos. Struct. 204, 301–312 (2018)

    Google Scholar 

  38. Yang, Z., Huang, Y., Liu, A., Fu, J., Wu, D.: Nonlinear in-plane buckling of fixed shallow functionally graded graphene reinforced composite arches subjected to mechanical and thermal loading. Appl. Math. Modell. 70, 315–327 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Arefi, M., Mohammad-Rezaei, B.E., Dimitri, R., Bacciocchi, M., Tornabene, F.: Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets. Compos. Part B 166, 1–12 (2019)

    Google Scholar 

  40. Polit, O., Anant, C., Anirudh, B., Ganapathi, M.: Functionally graded graphene reinforced porous nanocomposite curved beams: bending and elastic stability using a higher-order model with thickness stretch effect. Compos. Part B 166, 310–327 (2019)

    Google Scholar 

  41. Anirudh, B., Ganapathi, M., Anant, C., Polit, O.: A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: bending, vibration and buckling. Compos. Struct. 222, 110899 (2019)

    Google Scholar 

  42. Malekzadeh, P., Bahranifard, F., Ziaee, S.: Three-dimensional free vibration analysis of functionally graded cylindrical panels with cut-out using Chebyshev–Ritz method. Compos. Struct. 105, 1–13 (2013)

    Google Scholar 

  43. Tang, B.: Combined dynamic stiffness matrix and precise time integration method for transient forced vibration response analysis of beams. J. Sound Vib. 309, 868–876 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Golbahar Haghighi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. The strain–displacement relations

Based on the three-dimensional elasticity theory, the strain–displacement relations in the polar coordinate system can be summarized as

$$\begin{aligned} \varepsilon _{\theta \theta }&= \varepsilon _{\theta \theta }^{L}+\varepsilon _{\theta \theta }^\mathrm{NL},\quad \varepsilon _{\theta \theta }^{L}=\frac{1}{r}\left( u+\frac{\partial v}{\partial \theta } \right) ,\quad \varepsilon _{\theta \theta }^\mathrm{NL}=\frac{1}{2r^{2}}\left[ \left( \frac{\partial v}{\partial \theta }+u \right) ^{2}+ \right. \left. \left( \frac{\partial u}{\partial \theta }-v \right) ^{2} \right] , \\ \gamma _{r\theta }^{L}&= \frac{\partial v}{\partial r}+\frac{1}{r}\left( \frac{\partial u}{\partial \theta }-v \right) . \end{aligned}$$
(A.a--d)

Appendix B. The elements of mass matrix, stiffness matrix and force vector

The elements of the mass and stiffness sub-matrices, and force vectors are as follows, respectively,

$$\begin{aligned} \left( {{\varvec{M}}}_{{\varvec{AA}}} \right) _{ij} = I_{0}D_{i,j},\quad \left( {{\varvec{M}}}_{{\varvec{BB}}} \right) _{ij}= I_{0}D_{i,j},\quad \left( {{\varvec{M}}}_{{{\varvec{B}}}C} \right) _{ij}= I_{1}D_{i,j},\quad \left( {{\varvec{M}}}_{{\varvec{CC}}} \right) _{ij}= I_{2}D_{i,j},\quad \left( {{\varvec{M}}}_{{{\varvec{B}}}C} \right) _{ji}= \left( {{\varvec{M}}}_{C{{\varvec{B}}}} \right) _{ij}, \end{aligned}$$
(B.1a--e)
$$\begin{aligned} \left( {{\varvec{K}}}_{{\varvec{AA}}} \right) _{ij}&= H_{i,j}^{\vartheta ,0,0}Q_{1}^{-1,0}+\theta _{*}^{2}H_{i,j}^{\vartheta ,1,1}Q_{3}^{-1,0}+S^{0}\left( \theta _{*}^{2}H_{i,j}^{\vartheta ,1,1}+H_{i,j}^{\vartheta ,0,0} \right) , \\ \left( {{\varvec{K}}}_{{\varvec{AB}}} \right) _{ij}&= \theta _{*}\left[ \left( H_{i,j}^{\vartheta ,0,1} \right. Q_{1}^{-1,0} \right. - \left. H_{i,j}^{\vartheta ,1,0}Q_{3}^{-1,0} \right) +\left. S^{0}\left( -H_{i,j}^{\vartheta ,1,0}+H_{i,j}^{\vartheta ,0,1} \right) \right] , \\ \left( {{\varvec{K}}}_{{\varvec{AC}}} \right) _{ij}&= \theta _{*}\left[ \left( H_{i,j}^{\vartheta ,0,1}Q_{1}^{-1,1} \right. +H_{i,j}^{\vartheta ,1,0}\left. \left[ {-Q}_{3}^{-1,1}+Q_{3}^{0,0} \right] \right) +S^{1} \right. \left. \left( -H_{i,j}^{\vartheta ,1,0}+H_{i,j}^{\vartheta ,0,1} \right) \right] , \end{aligned}$$
(B.2a--i)
$$\begin{aligned} \left( {{\varvec{K}}}_{{\varvec{BB}}} \right) _{ij}&= \theta _{*}^{2}H_{i,j}^{\vartheta ,1,1}Q_{1}^{-1,0}+H_{i,j}^{\vartheta ,0,0}Q_{3}^{-1,0}+S^{0}\left( H_{i,j}^{\vartheta ,0,0}+\theta _{*}^{2}H_{i,j}^{\vartheta ,1,1} \right) , \\ \left( {{\varvec{K}}}_{{\varvec{BC}}} \right) _{ij}&= \theta _{*}^{2}H_{i,j}^{\vartheta ,1,1}Q_{1}^{-1,1}+H_{i,j}^{\vartheta ,0,0}\left( Q_{3}^{-1,1}-Q_{3}^{0,0} \right) +S^{1}\left( H_{i,j}^{\vartheta ,0,0} \right. +\left. \theta _{*}^{2}H_{i,j}^{\vartheta ,1,1} \right) , \\ \left( {{\varvec{K}}}_{{\varvec{CC}}} \right) _{i,j}&= \theta _{*}^{2}H_{i,j}^{\vartheta ,1,1}Q_{1}^{-1,2}+H_{i,j}^{\vartheta ,0,0}\left( Q_{3}^{1,0}+Q_{3}^{-1,2}-2Q_{3}^{0,1} \right) +S^{2}\left( H_{i,j}^{\vartheta ,0,0}+ \right. \left. \theta _{*}^{2}H_{i,j}^{\vartheta ,1,1} \right) , \\ \left( {{\varvec{K}}}_{{\varvec{AB}}} \right) _{ij}&= \left( {{\varvec{K}}}_{{\varvec{BA}}} \right) _{ji}\left( {{\varvec{K}}}_{{\varvec{AC}}} \right) _{ij}=\left( {{\varvec{K}}}_{{\varvec{CA}}} \right) _{ji}, \left( {{\varvec{K}}}_{{\varvec{BC}}} \right) _{ij}=\left( {{\varvec{K}}}_{{\varvec{CB}}} \right) _{ji}. \\ \left( {\mathbf{F }}_{{\mathbf{A }}} \right) _{i}&= F(t)J_{i}^{\vartheta }\left( {\mathbf{F }}_{{\mathbf{B }}} \right) _{i}=\left( {\mathbf{F }}_{{\mathbf{C }}} \right) _{i}=0, \end{aligned}$$
(B.3a--c)

where

$$\begin{aligned} D_{i,j}^{\vartheta }&= \int _{-1}^{+1} \left[ F_\mathrm{B}^{\vartheta }(\beta )P_{i}(\beta ) \right] \left[ F_\mathrm{B}^{\vartheta }(\beta )P_{j}(\beta ) \right] \text {d}\beta ,\quad I^{\eta } =b\sum \limits _{i=1}^{N_\mathrm{L}} {\int _{r_{i}}}^{r_{i+1}} {\rho _{i}(r)} r\chi ^{\eta }dr, \\ H_{i,j}^{\vartheta ,a,{{\bar{a}}} }&= \int _{-1}^{+1} \frac{d^{a}\left[ F_\mathrm{B}^{\vartheta }\left( \beta \right) P_{i}\left( \beta \right) \right] }{\text {d}\beta ^{a}} \frac{d^{{{\bar{a}}}}\left[ F_\mathrm{B}^{\vartheta }\left( \beta \right) P_{j}\left( \beta \right) \right] }{\text {d}\beta ^{{{\bar{a}}}}}\text {d}\beta , \\ \left( Q_{1}^{\vartheta ,\eta }, \right. \left. Q_{3}^{\vartheta ,\eta } \right)&= b\sum \limits _{i=1}^{N_\mathrm{L}} {\int _{r_{i}}}^{r_{i+1}} {\left( \frac{E_{i}(r)}{1-\nu _{ci}^{2}(r)} \right. ,} \left. \frac{E_{i}(r)}{2\left( 1+\nu _{ci}(r) \right) } \right) r^{\vartheta }\chi ^{\eta }dr,\\ S^{\eta }&=\frac{b}{2}\sum \limits _{i=1}^{N_\mathrm{L}} \int _{r_{i}}^{r_{i+1}} {\alpha _{i}^{*}(r)\varDelta T} \frac{1}{r}\chi ^{\eta }dr, \\ \alpha _{i}^{*}(r)&= -\,\left( 3\mu _{i}(r)+2G_{i}(r) \right) \alpha _{i}(r), \quad J_{i}^{\vartheta }=\int _{-1}^{+1} \left[ F_\mathrm{B}^{\vartheta }(\beta )P_{i}(\beta ) \right] \text {d}\beta , \left( \vartheta =U,V,\varPhi \right) , \\ \theta _{*}&= \frac{2}{\theta _{0}}, \end{aligned}$$
(B.4a--h)

where if \(i=1,r_{1}=R_{i}\) and if \(i=N_\mathrm{L}+1\), \(r_{N_\mathrm{L}+1}=R_\mathrm{o}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahranifard, F., Golbahar Haghighi, M.R. & Malekzadeh, P. In-plane responses of multilayer FG-GPLRC curved beams in thermal environment under moving load. Acta Mech 231, 2679–2696 (2020). https://doi.org/10.1007/s00707-020-02654-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02654-2

Navigation