Abstract
In this paper, we extend the dynamic spherical cavity expansion model for rate-independent materials developed by Durban and Masri (Int J Solids Struct 41(20):5697–5716, 2004), Masri and Durban (J Appl Mech 72(6):887–898, 2005), and Cohen et al. (J Appl Mech 77(4):041009, 2010) to viscoplastic media. For that purpose, we describe the material behavior with an isotropic Perzyna-type overstress formulation (Perzyna in Q Appl Math 20:321–332, 1963; Adv Appl Mech 9:243–377, 1966) in which the material rate dependence is controlled by the viscosity parameter \(\eta \). The theoretical predictions of the cavity expansion model, which assumes that the cavity expands at constant velocity, are compared with finite element simulations performed in ABAQUS/Explicit (Abaqus Explicit v6.13 User’s Manual, ABAQUS Inc., Richmond). The agreement between theory and numerical simulations is excellent for the whole range of cavitation velocities investigated, and for different values of the parameter \(\eta \). We show that, as opposed to the steady-state self-similar solutions obtained for rate-independent materials (Durban and Masri 2004; Masri and Durban 2005; Cohen et al. 2010), the material viscosity leads to time-dependent cavitation fields and stress relaxation as the cavity enlarges. In addition, we also show that the material viscosity facilitates to model the shock waves that emerge at the highest cavitation velocities investigated, controlling the amplitude and the width of the shock front.
This is a preview of subscription content,
to check access.









References
Hopkins, H.: Dynamic expansion of spherical cavities in metals. Prog. Solid Mech. 1(3), 5–16 (1960)
Goodier, J.: On the mechanics of indentation and cratering in solid targets of strain-hardening metal by impact of hard and soft spheres. In: Proceedings of the 7th Symposium on Hypervelocity Impact, vol. 3, pp. 215–259 (1965)
Durban, D., Masri, R.: Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium. Int. J. Solids Struct. 41(20), 5697–5716 (2004)
Forrestal, M., Luk, V., Brar, N.: Perforation of aluminum armor plates with conical-nose projectiles. Mech. Mater. 10(1), 97–105 (1990)
Forrestal, M., Brar, N., Luk, V.: Penetration of strain-hardening targets with rigid spherical-nose rods. J. Appl. Mech. 58(1), 7–10 (1991)
Forrestal, M.J., Warren, T.L.: Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates. Int. J. Impact Eng 36(2), 220–225 (2009)
Masri, R., Durban, D.: Deep penetration analysis with dynamic cylindrical cavitation fields. Int. J. Impact Eng 36(6), 830–841 (2009)
Cohen, T., Masri, R., Durban, D.: Ballistic limit predictions with quasi-static cavitation fields. Int. J. Prot. Struct. 1, 235–255 (2010b)
Durban, D., Fleck, N.A.: Spherical cavity expansion in a Drucker–Prager solid. J. Appl. Mech. 64, 743–750 (1997)
Fleck, N., Otoyo, H., Needleman, A.: Indentation of porous solids. Int. J. Solids Struct. 29(13), 1613–1636 (1992)
Cohen, T., Durban, D.: Hypervelocity cavity expansion in porous elastoplastic solids. J. Appl. Mech. 80(1), 011017 (2013a)
Cohen, T., Durban, D.: Fundamental solutions of cavitation in porous solids: a comparative study. Acta Mech. 224(8), 1695–1707 (2013b)
dos Santos, T., Vaz-Romero, A., Rodríguez-Martínez, J.A.: Dynamic cylindrical cavity expansion in orthotropic porous ductile materials. Int. J. Impact Eng. 132, 103325 (2019a)
Warren, T.L., Forrestal, M.J.: Effects of strain hardening and strain-rate sensitivity on the penetration of aluminum targets with spherical-nosed rods. Int. J. Solids Struct. 35(28), 3737–3753 (1998)
Cohen, T., Durban, D.: Steady shock waves in porous plastic solids. Int. J. Solids Struct. 71, 70–78 (2015)
Cleja-Tigoiu, S., Cazacu, O., Tigoiu, V.: Dynamic expansion of a spherical cavity within a rate-dependent compressible porous material. Int. J. Plast. 24(5), 775–803 (2008)
Buchely, M.F., Marañon, A.: An engineering model for the penetration of a rigid-rod into a Cowper–Symonds low-strength material. Acta Mech. 226(9), 2999–3010 (2015)
Buchely, M.F., Marañon, A.: Study of steady cavitation assumptions in strain-rate-sensitive solids for rigid projectile penetrations. Acta Mech. 227(10), 2969–2983 (2016)
Masri, R., Durban, D.: Dynamic spherical cavity expansion in an elastoplastic compressible Mises solid. J. Appl. Mech. 72(6), 887–898 (2005)
Cohen, T., Masri, R., Durban, D.: Shock waves in dynamic cavity expansion. J. Appl. Mech. 77(4), 041009 (2010a)
Perzyna, P.: The constitutive equations for rate sensitive plastic materials. Q. Appl. Math. 20, 321–332 (1963)
Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)
ABAQUS/Explicit: Abaqus Explicit v613 User’s Manual, version 6.13 edn. ABAQUS Inc., Richmond (2013)
Molinari, A., Ravichandran, G.: Fundamental structure of steady plastic shock waves in metals. J. Appl. Phys. 95(4), 1718–1732 (2004)
dos Santos, T., Ramos, G.R., Rossi, R.: A note on overstress and over-thermodynamic forces derivation for elasto–viscoplastic media: thermodynamic analysis of an isothermal relaxation process. Int. J. Eng. Sci. 93, 13–30 (2015)
Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Richmond (2000)
Kanninen, M.F., Mukherjee, A.K., Rosenfield, A.R., Hahn, G.T.: The Speed of Ductile-Crack Propagation and the Dynamics of Flow in Metals, pp. 96–133. Springer, Berlin (1968)
Perzyna, P.: Adiabatic shear band localization fracture of solids in dynamic loading processes. J. Phys. IV Colloq. 04(C8), C8-441–C8-446 (1994)
Glema, A., Łodygowski, T., Sumelka, W., Perzyna, P.: The numerical analysis of the intrinsic anisotropic microdamage evolution in elasto–viscoplastic solids. Int. J. Damage Mech. 18(3), 205–231 (2009)
Perzyna, P.: Application of the Thermodynamical Theory of Elasto–Viscoplasticity in Modern Manufacturing Processes, pp. 227–376. Springer, Vienna (2011). ISBN 978-3-7091-0427-9
dos Santos, T., N’souglo, K.E., Rodríguez-Martínez, J.A.: Dynamic spherical cavity expansion in Gurson materials with uniform and non-uniform distributions of porosity. Mech. Mater. 134, 115–131 (2019b)
Lew, A., Radovitzky, R., Ortiz, M.: An artificial-viscosity method for the lagrangian analysis of shocks in solids with strength on unstructured, arbitrary-order tetrahedral meshes. J. Comput. Aided Mater. Des. 8(2), 213–231 (2001)
Wilkins, M.L.: Use of artificial viscosity in multidimensional fluid dynamic calculations. J. Comput. Phys. 36(3), 281–303 (1980)
Rodríguez-Martínez, J.A., Cohen, T., Zaera, R.: Approaching steady cavitation: the time scale in hypervelocity cavity expansion in work hardening and transformation hardening solids. Int. J. Impact Eng. 73, 43–55 (2014)
Aranda-Iglesias, D., Vadillo, G., Rodríguez-Martínez, J.A.: Oscillatory behaviour of compressible hyperelastic shells subjected to dynamic inflation: a numerical study. Acta Mech. 228(6), 2187–2205 (2017)
Alfano, G., Angelis, F.D., Rosati, L.: General solution procedures in elasto/viscoplasticity. Comput. Methods Appl. Mech. Eng. 190(39), 5123–5147 (2001)
Careglio, C., Canales, C., García, G.C., Mirasso, A., Ponthot, J.P.A.: Numerical study of hypoelastic and hyperelastic large strain viscoplastic Perzyna type models. Acta Mech. 227(11), 3177–3190 (2016)
Cohen, T., Molinari, A.: Dynamic cavitation and relaxation in incompressible nonlinear viscoelastic solids. Int. J. Solids Struct. 69–70, 544–552 (2015)
Czarnota, C., Molinari, A., Mercier, S.: The structure of steady shock waves in porous metals. J. Mech. Phys. Solids 107, 204–228 (2017)
Masri, R.: The effect of adiabatic thermal softening on specific cavitation energy and ductile plate perforation. Int. J. Impact Eng. 68, 15–27 (2014)
Acknowledgements
The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme. Project PURPOSE, Grant Agreement 758056. RR wishes to acknowledge the support of CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, grant number 306058/2018-9.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
dos Santos, T., Brezolin, A., Rossi, R. et al. Modeling dynamic spherical cavity expansion in elasto-viscoplastic media. Acta Mech 231, 2381–2397 (2020). https://doi.org/10.1007/s00707-020-02646-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00707-020-02646-2