Skip to main content
Log in

Modeling dynamic spherical cavity expansion in elasto-viscoplastic media

Acta Mechanica Aims and scope Submit manuscript

Cite this article

Abstract

In this paper, we extend the dynamic spherical cavity expansion model for rate-independent materials developed by Durban and Masri (Int J Solids Struct 41(20):5697–5716, 2004), Masri and Durban (J Appl Mech 72(6):887–898, 2005), and Cohen et al. (J Appl Mech 77(4):041009, 2010) to viscoplastic media. For that purpose, we describe the material behavior with an isotropic Perzyna-type overstress formulation (Perzyna in Q Appl Math 20:321–332, 1963; Adv Appl Mech 9:243–377, 1966) in which the material rate dependence is controlled by the viscosity parameter \(\eta \). The theoretical predictions of the cavity expansion model, which assumes that the cavity expands at constant velocity, are compared with finite element simulations performed in ABAQUS/Explicit (Abaqus Explicit v6.13 User’s Manual, ABAQUS Inc., Richmond). The agreement between theory and numerical simulations is excellent for the whole range of cavitation velocities investigated, and for different values of the parameter \(\eta \). We show that, as opposed to the steady-state self-similar solutions obtained for rate-independent materials (Durban and Masri 2004; Masri and Durban 2005; Cohen et al. 2010), the material viscosity leads to time-dependent cavitation fields and stress relaxation as the cavity enlarges. In addition, we also show that the material viscosity facilitates to model the shock waves that emerge at the highest cavitation velocities investigated, controlling the amplitude and the width of the shock front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Hopkins, H.: Dynamic expansion of spherical cavities in metals. Prog. Solid Mech. 1(3), 5–16 (1960)

    Google Scholar 

  2. Goodier, J.: On the mechanics of indentation and cratering in solid targets of strain-hardening metal by impact of hard and soft spheres. In: Proceedings of the 7th Symposium on Hypervelocity Impact, vol. 3, pp. 215–259 (1965)

  3. Durban, D., Masri, R.: Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium. Int. J. Solids Struct. 41(20), 5697–5716 (2004)

    MATH  Google Scholar 

  4. Forrestal, M., Luk, V., Brar, N.: Perforation of aluminum armor plates with conical-nose projectiles. Mech. Mater. 10(1), 97–105 (1990)

    Google Scholar 

  5. Forrestal, M., Brar, N., Luk, V.: Penetration of strain-hardening targets with rigid spherical-nose rods. J. Appl. Mech. 58(1), 7–10 (1991)

    Google Scholar 

  6. Forrestal, M.J., Warren, T.L.: Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates. Int. J. Impact Eng 36(2), 220–225 (2009)

    Google Scholar 

  7. Masri, R., Durban, D.: Deep penetration analysis with dynamic cylindrical cavitation fields. Int. J. Impact Eng 36(6), 830–841 (2009)

    Google Scholar 

  8. Cohen, T., Masri, R., Durban, D.: Ballistic limit predictions with quasi-static cavitation fields. Int. J. Prot. Struct. 1, 235–255 (2010b)

    Google Scholar 

  9. Durban, D., Fleck, N.A.: Spherical cavity expansion in a Drucker–Prager solid. J. Appl. Mech. 64, 743–750 (1997)

    MATH  Google Scholar 

  10. Fleck, N., Otoyo, H., Needleman, A.: Indentation of porous solids. Int. J. Solids Struct. 29(13), 1613–1636 (1992)

    Google Scholar 

  11. Cohen, T., Durban, D.: Hypervelocity cavity expansion in porous elastoplastic solids. J. Appl. Mech. 80(1), 011017 (2013a)

    Google Scholar 

  12. Cohen, T., Durban, D.: Fundamental solutions of cavitation in porous solids: a comparative study. Acta Mech. 224(8), 1695–1707 (2013b)

    MathSciNet  MATH  Google Scholar 

  13. dos Santos, T., Vaz-Romero, A., Rodríguez-Martínez, J.A.: Dynamic cylindrical cavity expansion in orthotropic porous ductile materials. Int. J. Impact Eng. 132, 103325 (2019a)

    Google Scholar 

  14. Warren, T.L., Forrestal, M.J.: Effects of strain hardening and strain-rate sensitivity on the penetration of aluminum targets with spherical-nosed rods. Int. J. Solids Struct. 35(28), 3737–3753 (1998)

    MATH  Google Scholar 

  15. Cohen, T., Durban, D.: Steady shock waves in porous plastic solids. Int. J. Solids Struct. 71, 70–78 (2015)

    Google Scholar 

  16. Cleja-Tigoiu, S., Cazacu, O., Tigoiu, V.: Dynamic expansion of a spherical cavity within a rate-dependent compressible porous material. Int. J. Plast. 24(5), 775–803 (2008)

    MATH  Google Scholar 

  17. Buchely, M.F., Marañon, A.: An engineering model for the penetration of a rigid-rod into a Cowper–Symonds low-strength material. Acta Mech. 226(9), 2999–3010 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Buchely, M.F., Marañon, A.: Study of steady cavitation assumptions in strain-rate-sensitive solids for rigid projectile penetrations. Acta Mech. 227(10), 2969–2983 (2016)

    MathSciNet  Google Scholar 

  19. Masri, R., Durban, D.: Dynamic spherical cavity expansion in an elastoplastic compressible Mises solid. J. Appl. Mech. 72(6), 887–898 (2005)

    MATH  Google Scholar 

  20. Cohen, T., Masri, R., Durban, D.: Shock waves in dynamic cavity expansion. J. Appl. Mech. 77(4), 041009 (2010a)

    Google Scholar 

  21. Perzyna, P.: The constitutive equations for rate sensitive plastic materials. Q. Appl. Math. 20, 321–332 (1963)

    MathSciNet  MATH  Google Scholar 

  22. Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)

    Google Scholar 

  23. ABAQUS/Explicit: Abaqus Explicit v613 User’s Manual, version 6.13 edn. ABAQUS Inc., Richmond (2013)

    Google Scholar 

  24. Molinari, A., Ravichandran, G.: Fundamental structure of steady plastic shock waves in metals. J. Appl. Phys. 95(4), 1718–1732 (2004)

    Google Scholar 

  25. dos Santos, T., Ramos, G.R., Rossi, R.: A note on overstress and over-thermodynamic forces derivation for elasto–viscoplastic media: thermodynamic analysis of an isothermal relaxation process. Int. J. Eng. Sci. 93, 13–30 (2015)

    Google Scholar 

  26. Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Richmond (2000)

    MATH  Google Scholar 

  27. Kanninen, M.F., Mukherjee, A.K., Rosenfield, A.R., Hahn, G.T.: The Speed of Ductile-Crack Propagation and the Dynamics of Flow in Metals, pp. 96–133. Springer, Berlin (1968)

    Google Scholar 

  28. Perzyna, P.: Adiabatic shear band localization fracture of solids in dynamic loading processes. J. Phys. IV Colloq. 04(C8), C8-441–C8-446 (1994)

    Google Scholar 

  29. Glema, A., Łodygowski, T., Sumelka, W., Perzyna, P.: The numerical analysis of the intrinsic anisotropic microdamage evolution in elasto–viscoplastic solids. Int. J. Damage Mech. 18(3), 205–231 (2009)

    Google Scholar 

  30. Perzyna, P.: Application of the Thermodynamical Theory of Elasto–Viscoplasticity in Modern Manufacturing Processes, pp. 227–376. Springer, Vienna (2011). ISBN 978-3-7091-0427-9

    MATH  Google Scholar 

  31. dos Santos, T., N’souglo, K.E., Rodríguez-Martínez, J.A.: Dynamic spherical cavity expansion in Gurson materials with uniform and non-uniform distributions of porosity. Mech. Mater. 134, 115–131 (2019b)

    Google Scholar 

  32. Lew, A., Radovitzky, R., Ortiz, M.: An artificial-viscosity method for the lagrangian analysis of shocks in solids with strength on unstructured, arbitrary-order tetrahedral meshes. J. Comput. Aided Mater. Des. 8(2), 213–231 (2001)

    Google Scholar 

  33. Wilkins, M.L.: Use of artificial viscosity in multidimensional fluid dynamic calculations. J. Comput. Phys. 36(3), 281–303 (1980)

    MathSciNet  MATH  Google Scholar 

  34. Rodríguez-Martínez, J.A., Cohen, T., Zaera, R.: Approaching steady cavitation: the time scale in hypervelocity cavity expansion in work hardening and transformation hardening solids. Int. J. Impact Eng. 73, 43–55 (2014)

    Google Scholar 

  35. Aranda-Iglesias, D., Vadillo, G., Rodríguez-Martínez, J.A.: Oscillatory behaviour of compressible hyperelastic shells subjected to dynamic inflation: a numerical study. Acta Mech. 228(6), 2187–2205 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Alfano, G., Angelis, F.D., Rosati, L.: General solution procedures in elasto/viscoplasticity. Comput. Methods Appl. Mech. Eng. 190(39), 5123–5147 (2001)

    MATH  Google Scholar 

  37. Careglio, C., Canales, C., García, G.C., Mirasso, A., Ponthot, J.P.A.: Numerical study of hypoelastic and hyperelastic large strain viscoplastic Perzyna type models. Acta Mech. 227(11), 3177–3190 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Cohen, T., Molinari, A.: Dynamic cavitation and relaxation in incompressible nonlinear viscoelastic solids. Int. J. Solids Struct. 69–70, 544–552 (2015)

    Google Scholar 

  39. Czarnota, C., Molinari, A., Mercier, S.: The structure of steady shock waves in porous metals. J. Mech. Phys. Solids 107, 204–228 (2017)

    MathSciNet  Google Scholar 

  40. Masri, R.: The effect of adiabatic thermal softening on specific cavitation energy and ductile plate perforation. Int. J. Impact Eng. 68, 15–27 (2014)

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme. Project PURPOSE, Grant Agreement 758056. RR wishes to acknowledge the support of CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, grant number 306058/2018-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Rodríguez-Martínez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, T., Brezolin, A., Rossi, R. et al. Modeling dynamic spherical cavity expansion in elasto-viscoplastic media. Acta Mech 231, 2381–2397 (2020). https://doi.org/10.1007/s00707-020-02646-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02646-2

Navigation