Abstract
In this paper, we consider extensions of the gradient elasticity models proposed earlier by the second author to describe materials with fractional non-locality and fractality using the techniques developed recently by the first author. We derive a generalization of three-dimensional continuum gradient elasticity theory, starting from integral relations and assuming a weak non-locality of power-law type that gives constitutive relations with fractional Laplacian terms, by utilizing the fractional Taylor series in wave-vector space. In the sequel, we consider more general field equations with fractional derivatives of non-integer order to describe nonlinear elastic effects for gradient materials with power-law long-range interactions in the framework of weak non-locality approximation. The special constitutive relation that we elaborate upon can form the basis for developing a fractional extension of deformation theory of gradient plasticity. Using the perturbation method, we obtain corrections to the constitutive relations of linear fractional gradient elasticity, when the perturbations are caused by weak deviations from linear elasticity or by fractional gradient non-locality. Finally, we discuss fractal materials described by continuum models in non-integer dimensional spaces. Using a recently suggested vector calculus for non-integer dimensional spaces, we consider problems of fractal gradient elasticity.
This is a preview of subscription content, access via your institution.
References
Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3(5), 731–742 (1967)
Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)
Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)
Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)
Aifantis, E.C.: On the gradient approach—relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 49(12), 1367–1377 (2011)
Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35(10), 259–280 (2003)
Altan, B.S., Aifantis, E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)
Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)
Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)
Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)
Aifantis, E.C.: Internal length gradient (ILG) material mechanics across scales and disciplines. Adv. Appl. Mech. 49, 1–110 (2016)
Tarasov, V.E., Aifantis, E.C.: Towards fractional gradient elasticity. J. Mech. Behav. Mater. 23(1–2), 41–46 (2014). arXiv:1307.6999
Tarasov, V.E., Aifantis, E.C.: Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 197–227 (2015). arXiv:1404.5241
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Integrals and Derivatives of Fractional Order and Applications. Nauka i Tehnika, Minsk (1987)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Carpinteri, A., Mainardi, F. (eds.): Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)
Klafter, J., Lim, S.C., Metzler, R. (eds.): Fractional Dynamics. Recent Advances. World Scientific, Singapore (2011)
Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2010)
Uchaikin, V., Sibatov, R.: Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems. World Scientific, Singapore (2013)
Tarasov, V.E.: Review of some promising fractional physical models. Int. J. Mod. Phys. B. 27(9), 1330005 (2013). arXiv:1502.07681
Atanackovic, T., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics. Wiley, Hoboken (2014)
Povstenko, Y.: Fractional Thermoelasticity. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-15335-3
Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. App. Anal. 20(1), 7–51 (2017)
Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Differ. Eqs. 32(8), 1245–1260 (2007)
Biler, P., Imbert, C., Karch, G.: Barenblatt profiles for a nonlocal porous medium equation. C. R. Math. Acad. Sci. Paris 349, 641–645 (2011)
Tarasov, V.: Partial fractional derivatives of Riesz type and nonlinear fractional differential equations. Nonlinear Dyn. 86(3), 1745–1759 (2017)
Tarasov, V.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323, 2756–2778 (2008)
Ru, C.Q., Aifantis, E.C.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 101(1), 59–68 (1993)
Meerschaert, M.M., Benson, D.A., Bäumer, B.: Multidimensional advection and fractional dispersion. Phys. Rev. E 59(5), 5026 (1999)
Meerschaert, M.M., Mortensen, J., Wheatcraft, S.W.: Fractional vector calculus for fractional advection–dispersion. Physica A 367(15), 181–190 (2006)
Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)
Mainardi, F., Spada, G.C.: Relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 193(1), 133–160 (2011)
Colombaro, I., Giusti, A., Mainardi, F.: A class of linear viscoelastic models based on Bessel functions. Meccanica 52(4–5), 825–832 (2017)
Colombaro, I., Giusti, A., Mainardi, F.: On transient waves in linear viscoelasticity. Wave Motion 74, 191–212 (2017)
Tarasov, V.E.: Vector calculus in non-integer dimensional space and its applications to fractal media. Commun. Nonlinear Sci. Numer. Simul. 20(2), 360–374 (2015). arXiv:1503.02022
Tarasov, V.E.: Generalized memory: fractional calculus approach. Fractal Fract. 2(4) (2018) Article ID: 23. https://doi.org/10.3390/fractalfract2040023
Tarasov, V.E.: Continuum mechanics of fractal media. In: Altenbach, H., Ochsner, A. (eds.) Encyclopedia of Continuum Mechanics, pp. 1–8. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-53605-6_-69-1
Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A. 336(2–3), 167–174 (2005). arXiv:cond-mat/0506137
Tarasov, V.E.: Fractional hydrodynamic equations for fractal media. Ann. Phys. 318(2), 286–307 (2005). arXiv:physics/0602096
Tarasov, V.E.: Dynamics of fractal solid. Int. J. Mod. Phys. B. 19(27), 4103–4114 (2005). arXiv:0710.0787
Ostoja-Starzewski, M.: Towards thermomechanics of fractal media. ZAMP 58(6), 1085–1096 (2007)
Ostoja-Starzewski, M.: On turbulence in fractal porous media. ZAMP 59(6), 1111–1117 (2008)
Li, J., Ostoja-Starzewski, M.: Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465(2108), 2521–2536 (2009)
Li, J., Ostoja-Starzewski, M.: Correction to Li and Ostoja-Starzewski 465 (2108) 2521. Proc. R. Soc. A 467(2128), 1214 (2011)
Collins, J.C.: Renormalization. Cambridge University Press, Cambridge (1984)
Stillinger, F.H.: Axiomatic basis for spaces with noninteger dimensions. J. Math. Phys. 18(6), 1224–1234 (1977)
Palmer, C., Stavrinou, P.N.: Equations of motion in a non-integer-dimensional space. J. Phys. A 37(27), 6987–7003 (2004)
Tarasov, V.E.: Flow of fractal fluid in pipes: non-integer dimensional space approach. Chaos Solitons Fractals 67, 26–37 (2014). arXiv:1503.02842
Tarasov, V.E.: Anisotropic fractal media by vector calculus in non-integer dimensional space. J. Math. Phys. 55(8), 083510 (2014). arXiv:1503.02392
Tarasov, V.E.: Acoustic waves in fractal media: non-integer dimensional spaces approach. Wave Motion 63, 18–22 (2016)
Tarasov, V.E., Trujillo, J.J.: Fractional power-law spatial dispersion in electrodynamics. Ann. Phys. 334, 1–23 (2013). arXiv:1503.04349
Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)
Dzherbashyan, M.M., Nersesian, A.B.: The criterion of the expansion of the functions to Dirichlet series, Izvestiya Akademii Nauk Armyanskoi SSR. Seriya Fiziko-Matematicheskih Nauk 11(5), 85–108 (1958) (in Russian)
Dzherbashyan, M.M., Nersesian, A.B.: About application of some integro-differential operators. Doklady Akademii Nauk (Proc. Russ. Acad. Sci.) 121(2), 210–213 (1958) (in Russian)
Riemann, B.: Versuch einer Allgemeinen Auffassung der Integration und Differentiation, Gesammelte Mathematische Werke, Leipzig, Teubner, Dover, New York, 1953, pp. 331–344 (1876) (in German)
Hardy, G.H.: Riemann’s form of Taylor series. J. Lond. Math. Soc. 20, 45–57 (1945)
Trujillo, J.J., Rivero, M., Bonilla, B.: On a Riemann–Liouville generalized Taylor’s formula. J. Math. Anal. Appl. 231(1), 255–265 (1999)
Erdelyi, A.: Tables of Integral Transforms, vol. 1. McGraw-Hill, New York (1954)
Aifantis, E.C.: The physics of plastic deformation. Int. J. Plast. 3(3), 211–247 (1987)
Aifantis, E.C.: On scale invariance in anisotropic plasticity, gradient plasticity and gradient elasticity. Int. J. Eng. Sci. 47(11–12), 1089–1099 (2009)
Milovanov, A.V., Rasmussen, J.J.: Fractional generalization of the Ginzburg–Landau equation: an unconventional approach to critical phenomena in complex media. Phys. Lett. A 337(1–2), 75–80 (2005). arXiv:cond-mat/0309577
Tarasov, V.E., Zaslavsky, G.M.: Fractional Ginzburg–Landau equation for fractal media. Physica A 354, 249–261 (2005). arXiv:physics/0511144
Tarasov, V.E.: Psi-series solution of fractional Ginzburg–Landau equation. J. Phys. A. 39(26), 8395–8407 (2006). arXiv:nlin/0606070
Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1998)
Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004)
Moon, P., Spencer, D.E.: The meaning of the vector Laplacian. J. Franklin Inst. 256(6), 551–558 (1953)
Tarasov, V.E.: Toward lattice fractional vector calculus. J. Phys. A 47(35), 355204 (2014)
Tarasov, V.E.: Lattice fractional calculus. Appl. Math. Comput. 257, 12–33 (2015)
Tarasov, V.E.: Exact discretization by Fourier transforms. Commun. Nonlinear Sci. Numer. Simul. 37, 31–61 (2016)
Tarasov, V.E.: United lattice fractional integro-differentiation. Fract. Calc. Appl. Anal. 19(3), 625–664 (2016)
Tarasov, V.E.: Exact discretization of fractional Laplacian. Comput. Math. Appl. 73(5), 855–863 (2017)
Tarasov, V.E.: Variational principle of stationary action for fractional nonlocal media. Pac. J. Math. Ind. 7(1) (2015) Article 6
Tarasov, V.E.: Elasticity of fractal material by continuum model with non-integer dimensional space. Comptes Rendus Mecanique. 343(1), 57–73 (2015). arXiv:1503.03060
Askes, H., Morata, I., Aifantis, E.: Finite element analysis with staggered gradient elasticity. Comput. Struct. 86(11–12), 1266–1279 (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tarasov, V.E., Aifantis, E.C. On fractional and fractal formulations of gradient linear and nonlinear elasticity. Acta Mech 230, 2043–2070 (2019). https://doi.org/10.1007/s00707-019-2373-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00707-019-2373-x