Skip to main content

On fractional and fractal formulations of gradient linear and nonlinear elasticity

Abstract

In this paper, we consider extensions of the gradient elasticity models proposed earlier by the second author to describe materials with fractional non-locality and fractality using the techniques developed recently by the first author. We derive a generalization of three-dimensional continuum gradient elasticity theory, starting from integral relations and assuming a weak non-locality of power-law type that gives constitutive relations with fractional Laplacian terms, by utilizing the fractional Taylor series in wave-vector space. In the sequel, we consider more general field equations with fractional derivatives of non-integer order to describe nonlinear elastic effects for gradient materials with power-law long-range interactions in the framework of weak non-locality approximation. The special constitutive relation that we elaborate upon can form the basis for developing a fractional extension of deformation theory of gradient plasticity. Using the perturbation method, we obtain corrections to the constitutive relations of linear fractional gradient elasticity, when the perturbations are caused by weak deviations from linear elasticity or by fractional gradient non-locality. Finally, we discuss fractal materials described by continuum models in non-integer dimensional spaces. Using a recently suggested vector calculus for non-integer dimensional spaces, we consider problems of fractal gradient elasticity.

This is a preview of subscription content, access via your institution.

References

  1. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3(5), 731–742 (1967)

    Article  MATH  Google Scholar 

  2. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  4. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    Article  MATH  Google Scholar 

  5. Aifantis, E.C.: On the gradient approach—relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 49(12), 1367–1377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35(10), 259–280 (2003)

    Article  Google Scholar 

  7. Altan, B.S., Aifantis, E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)

    Article  Google Scholar 

  8. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  10. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Article  Google Scholar 

  11. Aifantis, E.C.: Internal length gradient (ILG) material mechanics across scales and disciplines. Adv. Appl. Mech. 49, 1–110 (2016)

    Article  Google Scholar 

  12. Tarasov, V.E., Aifantis, E.C.: Towards fractional gradient elasticity. J. Mech. Behav. Mater. 23(1–2), 41–46 (2014). arXiv:1307.6999

  13. Tarasov, V.E., Aifantis, E.C.: Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 197–227 (2015). arXiv:1404.5241

  14. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Integrals and Derivatives of Fractional Order and Applications. Nauka i Tehnika, Minsk (1987)

    MATH  Google Scholar 

  15. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  17. Carpinteri, A., Mainardi, F. (eds.): Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    MATH  Google Scholar 

  18. Klafter, J., Lim, S.C., Metzler, R. (eds.): Fractional Dynamics. Recent Advances. World Scientific, Singapore (2011)

    MATH  Google Scholar 

  19. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2010)

    Book  MATH  Google Scholar 

  20. Uchaikin, V., Sibatov, R.: Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  21. Tarasov, V.E.: Review of some promising fractional physical models. Int. J. Mod. Phys. B. 27(9), 1330005 (2013). arXiv:1502.07681

  22. Atanackovic, T., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics. Wiley, Hoboken (2014)

    Book  MATH  Google Scholar 

  23. Povstenko, Y.: Fractional Thermoelasticity. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-15335-3

    Book  MATH  Google Scholar 

  24. Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. App. Anal. 20(1), 7–51 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Differ. Eqs. 32(8), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Biler, P., Imbert, C., Karch, G.: Barenblatt profiles for a nonlocal porous medium equation. C. R. Math. Acad. Sci. Paris 349, 641–645 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tarasov, V.: Partial fractional derivatives of Riesz type and nonlinear fractional differential equations. Nonlinear Dyn. 86(3), 1745–1759 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tarasov, V.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323, 2756–2778 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ru, C.Q., Aifantis, E.C.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 101(1), 59–68 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meerschaert, M.M., Benson, D.A., Bäumer, B.: Multidimensional advection and fractional dispersion. Phys. Rev. E 59(5), 5026 (1999)

    Article  Google Scholar 

  31. Meerschaert, M.M., Mortensen, J., Wheatcraft, S.W.: Fractional vector calculus for fractional advection–dispersion. Physica A 367(15), 181–190 (2006)

    Article  Google Scholar 

  32. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  33. Mainardi, F., Spada, G.C.: Relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 193(1), 133–160 (2011)

    Article  Google Scholar 

  34. Colombaro, I., Giusti, A., Mainardi, F.: A class of linear viscoelastic models based on Bessel functions. Meccanica 52(4–5), 825–832 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Colombaro, I., Giusti, A., Mainardi, F.: On transient waves in linear viscoelasticity. Wave Motion 74, 191–212 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tarasov, V.E.: Vector calculus in non-integer dimensional space and its applications to fractal media. Commun. Nonlinear Sci. Numer. Simul. 20(2), 360–374 (2015). arXiv:1503.02022

  37. Tarasov, V.E.: Generalized memory: fractional calculus approach. Fractal Fract. 2(4) (2018) Article ID: 23. https://doi.org/10.3390/fractalfract2040023

  38. Tarasov, V.E.: Continuum mechanics of fractal media. In: Altenbach, H., Ochsner, A. (eds.) Encyclopedia of Continuum Mechanics, pp. 1–8. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-53605-6_-69-1

    Chapter  Google Scholar 

  39. Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A. 336(2–3), 167–174 (2005). arXiv:cond-mat/0506137

  40. Tarasov, V.E.: Fractional hydrodynamic equations for fractal media. Ann. Phys. 318(2), 286–307 (2005). arXiv:physics/0602096

  41. Tarasov, V.E.: Dynamics of fractal solid. Int. J. Mod. Phys. B. 19(27), 4103–4114 (2005). arXiv:0710.0787

  42. Ostoja-Starzewski, M.: Towards thermomechanics of fractal media. ZAMP 58(6), 1085–1096 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Ostoja-Starzewski, M.: On turbulence in fractal porous media. ZAMP 59(6), 1111–1117 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Li, J., Ostoja-Starzewski, M.: Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465(2108), 2521–2536 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, J., Ostoja-Starzewski, M.: Correction to Li and Ostoja-Starzewski 465 (2108) 2521. Proc. R. Soc. A 467(2128), 1214 (2011)

    Article  Google Scholar 

  46. Collins, J.C.: Renormalization. Cambridge University Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  47. Stillinger, F.H.: Axiomatic basis for spaces with noninteger dimensions. J. Math. Phys. 18(6), 1224–1234 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  48. Palmer, C., Stavrinou, P.N.: Equations of motion in a non-integer-dimensional space. J. Phys. A 37(27), 6987–7003 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tarasov, V.E.: Flow of fractal fluid in pipes: non-integer dimensional space approach. Chaos Solitons Fractals 67, 26–37 (2014). arXiv:1503.02842

  50. Tarasov, V.E.: Anisotropic fractal media by vector calculus in non-integer dimensional space. J. Math. Phys. 55(8), 083510 (2014). arXiv:1503.02392

  51. Tarasov, V.E.: Acoustic waves in fractal media: non-integer dimensional spaces approach. Wave Motion 63, 18–22 (2016)

    Article  MathSciNet  Google Scholar 

  52. Tarasov, V.E., Trujillo, J.J.: Fractional power-law spatial dispersion in electrodynamics. Ann. Phys. 334, 1–23 (2013). arXiv:1503.04349

    Article  MathSciNet  Google Scholar 

  53. Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Dzherbashyan, M.M., Nersesian, A.B.: The criterion of the expansion of the functions to Dirichlet series, Izvestiya Akademii Nauk Armyanskoi SSR. Seriya Fiziko-Matematicheskih Nauk 11(5), 85–108 (1958) (in Russian)

  55. Dzherbashyan, M.M., Nersesian, A.B.: About application of some integro-differential operators. Doklady Akademii Nauk (Proc. Russ. Acad. Sci.) 121(2), 210–213 (1958) (in Russian)

  56. Riemann, B.: Versuch einer Allgemeinen Auffassung der Integration und Differentiation, Gesammelte Mathematische Werke, Leipzig, Teubner, Dover, New York, 1953, pp. 331–344 (1876) (in German)

  57. Hardy, G.H.: Riemann’s form of Taylor series. J. Lond. Math. Soc. 20, 45–57 (1945)

    MathSciNet  Google Scholar 

  58. Trujillo, J.J., Rivero, M., Bonilla, B.: On a Riemann–Liouville generalized Taylor’s formula. J. Math. Anal. Appl. 231(1), 255–265 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  59. Erdelyi, A.: Tables of Integral Transforms, vol. 1. McGraw-Hill, New York (1954)

    MATH  Google Scholar 

  60. Aifantis, E.C.: The physics of plastic deformation. Int. J. Plast. 3(3), 211–247 (1987)

    Article  MATH  Google Scholar 

  61. Aifantis, E.C.: On scale invariance in anisotropic plasticity, gradient plasticity and gradient elasticity. Int. J. Eng. Sci. 47(11–12), 1089–1099 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Milovanov, A.V., Rasmussen, J.J.: Fractional generalization of the Ginzburg–Landau equation: an unconventional approach to critical phenomena in complex media. Phys. Lett. A 337(1–2), 75–80 (2005). arXiv:cond-mat/0309577

  63. Tarasov, V.E., Zaslavsky, G.M.: Fractional Ginzburg–Landau equation for fractal media. Physica A 354, 249–261 (2005). arXiv:physics/0511144

  64. Tarasov, V.E.: Psi-series solution of fractional Ginzburg–Landau equation. J. Phys. A. 39(26), 8395–8407 (2006). arXiv:nlin/0606070

  65. Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  66. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  67. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  68. Moon, P., Spencer, D.E.: The meaning of the vector Laplacian. J. Franklin Inst. 256(6), 551–558 (1953)

    Article  MathSciNet  Google Scholar 

  69. Tarasov, V.E.: Toward lattice fractional vector calculus. J. Phys. A 47(35), 355204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  70. Tarasov, V.E.: Lattice fractional calculus. Appl. Math. Comput. 257, 12–33 (2015)

    MathSciNet  MATH  Google Scholar 

  71. Tarasov, V.E.: Exact discretization by Fourier transforms. Commun. Nonlinear Sci. Numer. Simul. 37, 31–61 (2016)

    Article  MathSciNet  Google Scholar 

  72. Tarasov, V.E.: United lattice fractional integro-differentiation. Fract. Calc. Appl. Anal. 19(3), 625–664 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  73. Tarasov, V.E.: Exact discretization of fractional Laplacian. Comput. Math. Appl. 73(5), 855–863 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  74. Tarasov, V.E.: Variational principle of stationary action for fractional nonlocal media. Pac. J. Math. Ind. 7(1) (2015) Article 6

  75. Tarasov, V.E.: Elasticity of fractal material by continuum model with non-integer dimensional space. Comptes Rendus Mecanique. 343(1), 57–73 (2015). arXiv:1503.03060

  76. Askes, H., Morata, I., Aifantis, E.: Finite element analysis with staggered gradient elasticity. Comput. Struct. 86(11–12), 1266–1279 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily E. Tarasov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.E., Aifantis, E.C. On fractional and fractal formulations of gradient linear and nonlinear elasticity. Acta Mech 230, 2043–2070 (2019). https://doi.org/10.1007/s00707-019-2373-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-2373-x