Acta Mechanica

, Volume 230, Issue 6, pp 1999–2012 | Cite as

A crack along a part of an interface electrode in a piezoelectric bimaterial under anti-plane mechanical and in-plane electric loadings

  • V. GovorukhaEmail author
  • A. Sheveleva
  • M. Kamlah
Original Paper


An electrically conducting crack along a part of an electrode in the interface of a piezoelectric bimaterial under the action of anti-plane mechanical and in-plane electric loadings is analyzed. The electrode is assumed to be much thinner than the piezoelectric material, and therefore, its mechanical properties are neglected. Using special representations of field variables via sectionally analytic functions, a combined Dirichlet–Riemann boundary value problem is formulated and solved analytically. Explicit expressions for the shear stress, the electric field and the crack faces’ sliding displacement are derived. These quantities are also presented graphically along the corresponding parts of the material interface. The intensity factors for stress and electric field are determined as well. The dependencies of the mentioned values on the magnitude of the external electric loading and different ratios of the crack and electrode lengths are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Part of this work was executed during a stay of V. G. at Karlsruhe Institute of Technology (KIT). The authors gratefully acknowledge the support from KIT by funding the guest stay of V. G.


  1. 1.
    Deng, W., Meguid, S.A.: Analysis of conducting rigid inclusion at the interface of two dissimilar piezoelectric materials. J. Appl. Mech. 65, 76–84 (1998)CrossRefGoogle Scholar
  2. 2.
    dos Santos e Lucato, S.L., Lupascu, D.C., Kamlah, M.R., Rödel, J., Lynch, C.S.: Constraint-induced crack initiation at electrode edges in piezoelectric ceramics. Acta Mater. 49, 2751–2759 (2001)CrossRefGoogle Scholar
  3. 3.
    Furuta, A., Uchino, K.: Dynamic observation of crack propagation in piezoelectric multilayer actuators. J. Am. Ceram. Soc. 76, 1615–1617 (1993)CrossRefGoogle Scholar
  4. 4.
    Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y.: Interface cracks in piezoelectric materials. Smart Mater. Struct. 25, 023001 (2016)CrossRefGoogle Scholar
  5. 5.
    Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y.: An electrically permeable crack between two different piezoelectric materials. In: Wriggers, P., Eberhard, P. (eds.) Fracture mechanics of piezoelectric solids with interface cracks. Lecture Notes in Applied and Computational Mechanics, vol. 83, pp. 59–95. Springer (2017)Google Scholar
  6. 6.
    Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1965)Google Scholar
  7. 7.
    Häusler, C., Balke, H.: Full form of the near tip field for the interface crack between a piezoelectric material and a thin electrode. Mater. Sci. Forum 492–493, 261–266 (2005)CrossRefGoogle Scholar
  8. 8.
    Häusler, C., Gao, C.F., Balke, H.: Collinear and periodic electrode–ceramic interfacial cracks in piezoelectric bimaterials. J. Appl. Mech. 71, 486–492 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lang, S.: Harmonic functions. In: Axler, S., Ribet, K. (eds.) Complex Analysis. Graduate Texts in Mathematics, vol. 103, pp. 241–290. Springer, New York (1999)CrossRefGoogle Scholar
  10. 10.
    Lapusta, Y., Onopriienko, O., Loboda, V.: An interface crack with partially electrically conductive crack faces under anti-plane mechanical and in-plane electric loadings. Mech. Res. Commun. 81, 38–43 (2017)CrossRefGoogle Scholar
  11. 11.
    Li, X.F., Duan, X.Y.: Electroelastic analysis of a piezoelectric layer with electrodes. Int. J. Fract. 111, L73–L78 (2001)Google Scholar
  12. 12.
    Li, X.F.: Electroelastic field induced by thin interface electrodes between two bonded dissimilar piezoelectric ceramics. Sci. China Ser. G Phys. Mech. Astron. 49, 526–539 (2006)CrossRefGoogle Scholar
  13. 13.
    Li, Y.D., Zhang, N., Lee, K.Y.: Effect of a finite interface on the electrode in a non-homogeneous piezoelectric structure. Smart Mater. Struct. 18, 125028 (2009)CrossRefGoogle Scholar
  14. 14.
    Loboda, V., Mahnken, R.: An investigation of an electrode at the interface of a piezoelectric bimaterial space under remote electromechanical loading. Acta Mech. 221, 327–339 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Muskhelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Groningen (1953a)zbMATHGoogle Scholar
  16. 16.
    Muskhelisvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953b)Google Scholar
  17. 17.
    Nakhmein, E.L., Nuller, B.M.: The pressure of a system of stamps on an elastic half-plane under general conditions of contact adhesion and slip. J. Appl. Math. Mech. 52, 223–230 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Narita, F., Yoshida, M., Shindo, Y.: Electroelastic effect induced by electrode embedded at the interface of two piezoelectric half-planes. Mech. Mater. 36, 999–1006 (2004)CrossRefGoogle Scholar
  19. 19.
    Onopriienko, O., Loboda, V., Sheveleva, A., Lapusta, Y.: Interaction of a conductive crack and of an electrode at a piezoelectric bimaterial interface. C. R. Mec. 346, 449–459 (2018)CrossRefGoogle Scholar
  20. 20.
    Pak, Y.E.: Crack extension force in a piezoelectric material. J. Appl. Mech. 57, 647–653 (1990)CrossRefzbMATHGoogle Scholar
  21. 21.
    Pak, Y.E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54, 79–100 (1992)CrossRefGoogle Scholar
  22. 22.
    Park, S.B., Sun, C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78, 1475–1480 (1995)CrossRefGoogle Scholar
  23. 23.
    Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity. Gordon and Breach, New York (1998)Google Scholar
  24. 24.
    Ru, C.Q.: Exact solution for finite electrode layers embedded at the interface of two piezoelectric half-planes. J. Mech. Phys. Solids 48, 693–708 (2000a)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ru, C.Q.: Electrode–ceramic interfacial cracks in piezoelectric multilayer materials. J. Appl. Mech. 67, 255–261 (2000b)CrossRefzbMATHGoogle Scholar
  26. 26.
    Wang, B.L., Sun, Y.G., Han, J.C., Du, S.Y.: An interface electrode between two piezoelectric layers. Mech. Mater. 41, 1–11 (2009)CrossRefGoogle Scholar
  27. 27.
    Wang, X., Schiavone, P.: Debonded arc-shaped interface conducting rigid line inclusions in piezoelectric composites. C. R. Mec. 345, 724–731 (2017)CrossRefGoogle Scholar
  28. 28.
    Wang, X., Shen, Y.P.: Exact solution for mixed boundary value problems at anisotropic piezoelectric bimaterial interface and unification of various interface defects. Int. J. Solids Struct. 39, 1591–1619 (2002)CrossRefzbMATHGoogle Scholar
  29. 29.
    Winzer, S.R., Shankar, N., Ritter, A.: Designing cofired multilayer electrostrictive actuators for reliability. J. Am. Ceram. Soc. 72, 2246–2257 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computational MathematicsOles Honchar Dnipro National UniversityDniproUkraine
  2. 2.Institute of Applied MaterialsKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations