Skip to main content
Log in

Eigenfrequencies of microtubules embedded in the cytoplasm by means of the nonlocal integral elasticity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A biologically microscopic system presenting a highly scientific interest is the microtubule (MT). Our research endeavor revolves around the eigenfrequencies’ analysis of an MT embedded in the cytoplasm of the cell by means of the nonlocal integral elasticity for the first time. The MT is simulated as a beam and the cytoplasm as a Pasternak-type elastic foundation, respectively. The responses of the nonlocal integral stress models show to have a softening behavior in comparison with that of the classic model. Unlike the nonlocal differential model, no paradoxes and inconsistencies are raised for the nonlocal integral models. Our research conclusions are a hopeful sign for the applications of biomaterials and bioengineering structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marchesan, S., Kostarelos, K., Bianco, A., Prato, M.: The winding road for carbon nanotubes in nanomedicine. Mater. Today 18(1), 12–19 (2015)

    Google Scholar 

  2. González-Domínguez, E., Iturrioz-Rodríguez, N., Padín-González, E., Villegas, J., García-Hevia, L., Pérez-Lorenzo, M., Parak, W.J., Correa-Duarte, M.A., Fanarraga, M.L.: Carbon nanotubes gathered onto silica particles lose their biomimetic properties with the cytoskeleton becoming biocompatible. Int. J. Nanomed. 12, 6317–6328 (2017)

    Google Scholar 

  3. Alberts, B., Johnson, A.D., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 6th edn. Garland Science, New York (2014)

    Google Scholar 

  4. Hawkins, T., Mirigian, M., Yasar, M.S., Ross, J.L.: Mechanics of microtubules. J. Biomech. 43, 23–30 (2010)

    Google Scholar 

  5. Raff, E.C., Fackenthal, J.D., Hutchens, J.A., Hoyle, H.D., Turner, F.R.: Microtubule architecture specified by a \(\beta \)-tubulin isoform. Science 275(5296), 70–73 (1997)

    Google Scholar 

  6. Wade, R.H.: On and around microtubules: an overview. Mol. Biotechnol. 43, 177–191 (2009)

    Google Scholar 

  7. Mitchison, T., Kirschner, M.: Dynamic instability of microtubule growth. Nature 312(5991), 237–242 (1984)

    Google Scholar 

  8. Amos, L.A.: Microtubule structure and its stabilisation. Org. Biomol. Chem. 2(15), 2153–2160 (2004)

    Google Scholar 

  9. Sept, D., Baker, N.A., McCammon, J.A.: The physical basis of microtubule structure and stability. Protein Sci. 12(10), 2257–2261 (2003)

    Google Scholar 

  10. Goodson, H.V., Jonasson, E.M.: Microtubules and microtubule-associated proteins. Cold Spring Harbor Perspect. Biol. 10(6), a022608 (2018)

    Google Scholar 

  11. Schoutens, J.E.: A model describing bending in flagella. J. Biol. Phys. 30(2), 97–122 (2004)

    Google Scholar 

  12. Koshland, D.E., Mitchison, T.J., Kirschner, M.W.: Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331(6156), 499–504 (1988)

    Google Scholar 

  13. Weijer, C.J.: Collective cell migration in development. J. Cell Sci. 122(18), 3215–3223 (2009)

    Google Scholar 

  14. Etienne-Manneville, S.: Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29, 471–499 (2013)

    Google Scholar 

  15. Mora-Bermúdez, F., Huttner, W.B.: Novel insights into mammalian embryonic neural stem cell division: focus on microtubules. Mol. Biol. Cell 26(24), 4302–4306 (2015)

    Google Scholar 

  16. Hirokawa, N., Noda, Y., Tanaka, Y., Niwa, S.: Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10(10), 682–696 (2009)

    Google Scholar 

  17. Yu, W., Cook, C., Sauter, C., Kuriyama, R., Kaplan, P.L., Baas, P.W.: Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. J. Neurosci. 20(15), 5782–5791 (2000)

    Google Scholar 

  18. Yau, K.W., Schätzle, P., Tortosa, E., Pagès, S., Holtmaat, A., Kapitein, L.C., Hoogenraad, C.C.: Dendrites in vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus-end-out microtubule orientation. J. Neurosci. 36(4), 1071–1085 (2016)

    Google Scholar 

  19. Hyman, A.A., Salser, S., Drechsel, D.N., Unwin, N., Mitchison, T.J.: Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analog. GMPCPP Mol. Biol. Cell 3(10), 1155–1167 (1992)

    Google Scholar 

  20. Wang, L., Brown, A.: Rapid movement of microtubules in axons. Curr. Biol. 12(17), 1496–1501 (2002)

    Google Scholar 

  21. Stone, M.C., Nguyen, M.M., Tao, J., Allender, D.L., Rolls, M.M.: Global up-regulation of microtubule dynamics and polarity reversal during regeneration of an axon from a dendrite. Mol. Biol. Cell 21(5), 767–777 (2010)

    Google Scholar 

  22. Matamoros, A.J., Baas, P.W.: Microtubules in health and degenerative disease of the nervous system. Brain Res. Bull. 126, 217–225 (2016)

    Google Scholar 

  23. Serrano-Pozo, A., Frosch, M.P., Masliah, E., Hyman, B.T.: Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspect. Med. 1(1), a006189 (2011)

    Google Scholar 

  24. Penazzi, L., Bakota, L., Brandt, R.: Microtubule dynamics in neuronal development, plasticity, and neurodegeneration. Int. Rev. Cell Mol. Biol. 321, 89–169 (2016)

    Google Scholar 

  25. Sirenko, Y.M., Stroscio, M.A., Kim, K.: Elastic vibrations of microtubules in a fluid. Phys. Rev. E 53(1), 1003 (1996)

    Google Scholar 

  26. Xiang, P., Liew, K.M.: Free vibration analysis of microtubules based on an atomistic-continuum model. J. Sound Vib. 331(1), 213–230 (2012)

    Google Scholar 

  27. Zhang, J., Wang, C.: Free vibration analysis of microtubules based on the molecular mechanics and continuum beam theory. Biomech. Model. Mechan. 15, 1069–1078 (2016)

    Google Scholar 

  28. Kröner, E., Datta, B.K.: Nichtlokale Elastostatik: Ableitung aus der Gittertheorie. Z. Phys. 196(3), 203–211 (1966)

    Google Scholar 

  29. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    MathSciNet  MATH  Google Scholar 

  30. Lazar, M., Agiasofitou, E., Po, G.: Three-dimensional nonlocal anisotropic elasticity: a generalized continuum theory of \(\dot{A}\)ngström-mechanics. Acta Mech. (2019). https://doi.org/10.1007/s00707-019-02552-2

  31. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Google Scholar 

  32. Mahmoud, F.F.: On the non-existence of a feasible solution in the context of the differential form of Eringen’s constitutive model: a proposed iterative model based on a residual nonlocality formulation. Int. J. Appl. Mech. 09(07), 17594 (2017)

    Google Scholar 

  33. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3–5), 305–312 (2003)

    Google Scholar 

  34. Lazar, M., Maugin, G.A., Aifantis, E.C.: On dislocations in a special class of generalized elasticity. Phys. Status Solidi (b) 242, 2365–2390 (2005)

    Google Scholar 

  35. Lu, P., Lee, H.P., Lu, C., Zhang, P.Q.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99(7), 073510 (2006)

    Google Scholar 

  36. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)

    MATH  Google Scholar 

  37. Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103(2), 023511 (2008)

    Google Scholar 

  38. Lazar, M., Agiasofitou, E.: Screw dislocation in nonlocal anisotropic elasticity. Int. J. Eng. Sci. 49, 1404–1414 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Xu, X.J., Deng, Z.C., Zhang, K., Xu, W.: Observations of the softening phenomena in the nonlocal cantilever beams. Compos. Struct. 145, 43–57 (2016)

    Google Scholar 

  40. Gao, Y., Lei, F.M.: Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory. Biochem. Biophys. Res. Commun. 387, 467–471 (2009)

    Google Scholar 

  41. Civalek, Ö., Akgöz, B.: Free vibration analysis of microtubules as cytoskeleton components: nonlocal Euler–Bernoulli beam modeling. Sci. Iran. 17(5B), 367–375 (2010)

    MATH  Google Scholar 

  42. Heireche, H., Tounsi, A., Benhassaini, H., Benzair, A., Bendahmane, M., Missouri, M., Mokadem, S.: Nonlocal elasticity effect on vibration characteristics of protein microtubules. Physica E 42(9), 2375–2379 (2010)

    Google Scholar 

  43. Civalek, Ö., Demir, C.: A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl. Math. Comput. 289, 335–352 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Li, S., Wang, C., Nithiarasu, P.: Structure-property relation and relevance of beam theories for microtubules: a coupled molecular and continuum mechanics study. Biomech. Model. Mechan. 17(2), 339–349 (2018)

    Google Scholar 

  45. Ghavanloo, E., Daneshmand, F., Amabili, M.: Vibration analysis of a single microtubule surrounded by cytoplasm. Physica E 43, 192–198 (2010)

    Google Scholar 

  46. Shen, H.S.: Nonlinear vibration of microtubules in living cells. Curr. Appl. Phys. 11, 812–821 (2011)

    Google Scholar 

  47. Taj, M., Zhang, J.Q.: Analysis of vibrational behaviors of microtubules embedded within elastic medium by Pasternak model. Biochem. Biophys. Res. Commun. 424, 89–93 (2012)

    Google Scholar 

  48. Taj, M., Zhang, J.: Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model. J. Mech. Behav. Biomed. 30, 300–305 (2014)

    Google Scholar 

  49. Pradhan, S.C., Murmu, T.: Small-scale effect on vibration analysis of single-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory. J. Appl. Phys. 105, 124306 (2009)

    Google Scholar 

  50. Ansari, R., Gholami, R., Hosseini, K., Sahmani, S.: A sixth-order compact finite difference method for vibration analysis of nanobeams embedded in an elastic medium based on nonlocal beam theory. Math. Comput. Model. 54, 2577–2586 (2011)

    MATH  Google Scholar 

  51. Mohamed, S.A., Shanab, R.A., Seddek, L.F.: Vibration analysis of Euler–Bernoulli nanobeams embedded in an elastic medium by a sixth-order compact finite difference method. Appl. Math. Model. 40, 2396–2406 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Rahmanian, M., Torkaman-Asadi, M.A., Firouz-Abadi, R.D., Kouchakzadeh, M.A.: Free vibrations analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models. Physica B 484, 83–94 (2016)

    Google Scholar 

  53. Koutsoumaris, C.C., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)

    Google Scholar 

  54. Eptaimeros, K.G., Koutsoumaris, C.C., Dernikas, I.T., Zisis, Th: Dynamical response of an embedded nanobeam by using nonlocal integral stress models. Compos. B Eng. 150, 255–268 (2018)

    Google Scholar 

  55. Koutsoumaris, C.C., Eptaimeros, K.G.: A research into bi-Helmholtz type of nonlocal elasticity and a direct approach to Eringen’s nonlocal integral model in a finite body. Acta Mech. 229(9), 3629–3649 (2018)

    MathSciNet  MATH  Google Scholar 

  56. Polizzotto, C.: Nonlocal elasticity and related variational principles. Int. J. Solids Struct. 38(42–43), 7359–7380 (2001)

    MathSciNet  MATH  Google Scholar 

  57. Eringen, A.C.: Theory of nonlocal elasticity and some applications. Res. Mech. 21(4), 313–342 (1987)

    Google Scholar 

  58. Benvenuti, E., Simone, A.: One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect. Mech. Res. Commun. 48, 46–51 (2013)

    Google Scholar 

  59. Eptaimeros, K.G., Koutsoumaris, C.C., Tsamasphyros, G.J.: Nonlocal integral approach to the dynamical response of nanobeams. Int. J. Mech. Sci. 115–116, 68–80 (2016)

    Google Scholar 

  60. Fernández-Sáez, J., Zaera, R.: Vibrations of Bernoulli–Euler beams using the two-phase nonlocal elasticity theory. Int. J. Eng. Sci. 119, 232–248 (2017)

    MathSciNet  MATH  Google Scholar 

  61. Wang, Y.B., Zhu, X.W., Dai, H.H.: Exact solutions for the static bending of Euler–Bernoulli beams using Eringen’s two phase local/nonlocal model. AIP Adv. 6(8), 085114 (2016)

    Google Scholar 

  62. Zhu, X., Wang, Y., Dai, H.H.: Buckling analysis of Euler–Bernoulli beams using Eringen’s two-phase nonlocal model. Int. J. Eng. Sci. 116, 130–140 (2017)

    MathSciNet  MATH  Google Scholar 

  63. Zhu, X., Li, L.: Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. Int. J. Mech. Sci. 133, 639–650 (2017)

    Google Scholar 

  64. Mikhasev, G., Avdeichik, E., Prikazchikov, D.: Free vibrations of nonlocally elastic rods. Math. Mech. Solids 24(5), 1279–1293 (2019)

    MathSciNet  Google Scholar 

  65. Zhu, X., Li, L.: A well-posed Euler–Bernoulli beam model incorporating nonlocality and surface energy effect. Appl. Math. Mech. Eng. 40(11), 1561–1588 (2019)

    MathSciNet  MATH  Google Scholar 

  66. Borino, G., Failla, B., Parrinello, F.: A symmetric nonlocal damage theory. Int. J. Solids Struct. 40(13–14), 3621–3645 (2003)

    MATH  Google Scholar 

  67. Bažant, Z.P., Jirásek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. ASCE 128(11), 1119–1149 (2002)

    Google Scholar 

  68. Lazar, M., Maugin, G.A., Aifantis, E.C.: On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int. J. Solids Struct. 43(6), 1404–1421 (2006)

    MathSciNet  MATH  Google Scholar 

  69. Pokorný, J., Jelínek, F., Trkal, V., Lamprecht, I., Hölzel, R.: Vibrations in microtubules. J. Biol. Phys. 23(3), 171–179 (1997)

    Google Scholar 

  70. Kučera, O., Havelka, D., Cifra, M.: Vibrations of microtubules: physics that has not met biology yet. Wave Motion 72, 13–22 (2017)

    MathSciNet  Google Scholar 

  71. Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. 31(3), 491–498 (1964)

    MATH  Google Scholar 

  72. Nogales, E., Wolf, S.G., Downing, K.H.: Structure of the \(\alpha \beta \) tubulin dimer by electron crystallography. Nature 391(6663), 199–203 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. G. Eptaimeros or C. Chr. Koutsoumaris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eptaimeros, K.G., Koutsoumaris, C.C. & Karyofyllis, I.G. Eigenfrequencies of microtubules embedded in the cytoplasm by means of the nonlocal integral elasticity. Acta Mech 231, 1669–1684 (2020). https://doi.org/10.1007/s00707-019-02605-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02605-6

Navigation