Skip to main content
Log in

Creep behavior due to interface diffusion in unidirectional fiber-reinforced metal matrix composites under general loading conditions: a micromechanics analysis

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the creep behavior due to interface diffusion in unidirectional fiber-reinforced metal matrix composites under general transverse loading conditions is studied. A micromechanics model is adopted to estimate the average stresses in fibers, which is demonstrated to be of reasonable accuracy by comparing with finite element analysis. The creep deformation due to interface diffusion is characterized by a tensor-form creep strain rate, which is related to the components of average stress in fibers and possesses incompressibility. The derived creep strain tensor is then introduced into fibers as eigenstrain to estimate the effect of creep strain on stress redistribution in composites. Eventually, the macroscopic creep strain of composites under constant external loads and the stress relaxation at fixed displacements due to interface diffusion are calculated by the incremental creep analysis procedures based on the average field theory. The effects of loading conditions on the overall creep behavior are examined in detail. Results of this study show that under the fixed strain condition, the initial biaxial stress ratio actually varies rather than remains unchanged during the stress relaxation process. In both constant stress and constant strain conditions, stresses in fibers have a propensity to approach hydrostatic stress state, thus suppressing the interface diffusion. These findings were not reported in previous researches and may bring new understanding on diffusion-induced creep deformation in metal matrix composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nimmagadda, P.B.R., Sofronis, P.: Creep strength of fiber and particulate composite materials: the effect of interface slip and diffusion. Mech. Mater. 23, 1–19 (1996)

    Article  Google Scholar 

  2. Nimmagadda, P.B.R., Sofronis, P.: On the calculation of the matrix-reinforcement interface diffusion coefficient in diffusional relaxation of composite materials at high temperatures. Acta Mater. 44, 2711–2716 (1996)

    Article  Google Scholar 

  3. Rösler, J., Valencia, J.J., Levi, C.G., Evans, A.G., Mehrabian, R.: The high temperature behaviour of TiAl containing carbide reinforcements. MRS Proc. 194, 241–248 (1990)

    Article  Google Scholar 

  4. Rösler, J., Bao, G., Evans, A.G.: The effects of diffusional relaxation on the creep strength of composites. Acta Metall. Mater. 39, 2733–2738 (1991)

    Article  Google Scholar 

  5. Bullock, E., McLean, M., Miles, D.: Creep behaviour of a Ni–Ni3Al–Cr3C2 eutectic composite. Acta Metall. 25, 333–344 (1977)

    Article  Google Scholar 

  6. Kelly, A., Street, K.N.: Creep of discontinuous fibre composites. II. Theory steady-state. Proc. R. Soc. Lond. 328, 283–293 (1972)

    Google Scholar 

  7. Kim, K.T., McMeeking, R.M.: Power law creep with interface slip and diffusion in a composite material. Mech. Mater. 20, 153–164 (1995)

    Article  Google Scholar 

  8. McMeeking, M.R.: Power law creep of a composite material containing discontinuous rigid aligned fibers. Int. J. Solids Struct. 30, 1807–1823 (1993)

    Article  Google Scholar 

  9. Sofronis, P., McMeeking, R.M.: The effect of interface diffusion and slip on the creep resistance of particulate composite materials. Mech. Mater. 18, 55–68 (1994)

    Article  Google Scholar 

  10. Chun, H.J., Daniel, I.M.: Transverse creep behavior of a unidirectional metal matrix composite. Mech. Mater. 25, 37–46 (1997)

    Article  Google Scholar 

  11. Mori, T., Okabe, M., Mura, T.: Diffusional relaxation around a second phase particle. Acta Metall. 28, 319–325 (1980)

    Article  Google Scholar 

  12. Tsukamoto, H.: A mean-field micromechanical formulation of a nonlinear constitutive equation of a two-phase composite. Comput. Mater. Sci. 50, 560–570 (2010)

    Article  Google Scholar 

  13. Wang, Y.M., Weng, G.J.: Transient creep strain of a fiber-reinforced metal-matrix composite under transverse loading. Trans. ASME J. Eng. Mater. Technol. 114, 237–244 (1992)

    Article  Google Scholar 

  14. Dong, S.L., Wisnom, M.R.: Finite element micromechanical modelling of unidirectional fibre-reinforced metal-matrix composites. Compos. Sci. Technol. 51, 545–563 (1994)

    Article  Google Scholar 

  15. Sun, H.Y., Di, S.L., Zhang, N., Wu, C.C.: Micromechanics of composite materials using multivariable finite element method and homogenization theory. Int. J. Solids Struct. 38, 3007–3020 (2001)

    Article  Google Scholar 

  16. Xu, W., Xu, B., Guo, F.: Elastic properties of particle-reinforced composites containing nonspherical particles of high packing density and interphase: DEM-FEM simulation and micromechanical theory. Comput. Method. Appl. Mech. Eng. 326, 122–143 (2017)

    Article  MathSciNet  Google Scholar 

  17. John, R., Khobaib, M., Smith, R.P.: Prediction of creep-rupture life of unidirectional titanium matrix composites subjected to transverse loading. Metall. Mater. Trans. A 27, 3074–3080 (1996)

    Article  Google Scholar 

  18. Bednarcyk, B.A., Arnold, S.M.: Transverse tensile and creep modeling of continuously reinforced titanium composites with local debonding. Int. J.Solids Struct. 39, 1987–2017 (2002)

    Article  Google Scholar 

  19. Li, Y., Li, Z.: Transverse creep and stress relaxation induced by interface diffusion in unidirectional metal matrix composites. Compos. Sci. Technol. 72, 1608–1612 (2012)

    Article  Google Scholar 

  20. Xu, B., Guo, F.: A micromechanics method for transverse creep behavior induced by interface diffusion in unidirectional fiber-reinforced metal matrix composites. Int. J. Solids Struct. 159, 126–134 (2019)

    Article  Google Scholar 

  21. Arnold, W., Robb, M., Marshall, I.: Failure envelopes for notched CSM laminates under biaxial loading. Composites 26, 739–747 (1995)

    Article  Google Scholar 

  22. Smits, A., Van Hemelrijck, D., Philippidis, T.P., Cardon, A.: Design of a cruciform specimen for biaxial testing of fibre reinforced composite laminates. Compos. Sci. Technol. 66, 964–975 (2006)

    Article  Google Scholar 

  23. Li, Y., Shu, L., Li, Z.: Interface diffusion-induced creep and stress relaxation in unidirectional metal matrix composites under biaxial loading. Mech. Mater. 76, 20–26 (2014)

    Article  Google Scholar 

  24. Eshelby, J.D.: The Determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. 241, 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  25. Li, Y., Li, Z., Wang, X., Sun, J.: Analytical solution for motion of an elliptical inclusion in gradient stress field. J. Mech. Phys. Solids 58, 1001–1010 (2010)

    Article  MathSciNet  Google Scholar 

  26. Herring, C.: Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437–445 (1950)

    Article  Google Scholar 

  27. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  28. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  29. Hori, M., Nemat-Nasser, S.: Double-inclusion model and overall moduli of multi-phase composites. J. Eng. Mater. Technol. 14, 189–206 (1994)

    Google Scholar 

  30. Zheng, Q.S., Du, D.X.: An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J. Mech. Phys. Solids 49, 2765–2788 (2001)

    Article  Google Scholar 

  31. Park, Y.H., Holmes, J.W.: Finite element modelling of creep deformation in fibre-reinforced ceramic composites. J. Mater. Sci. 27, 6341–6351 (1992)

    Article  Google Scholar 

  32. Coble, R.: A model for boundary diffusion controlled creep in polycrystalline materials. J. appl. phys. 34, 1679–1682 (1963)

    Article  Google Scholar 

  33. Wakashima, K., Choi, B.H., Mori, T.: Plastic incompatibility and its accommodation by diffusional flow: modelling of steady state creep of a metal matrix composite. Mater.Sci. Eng. A (Struct. Mater: Prop. Microstruct. Process.) A127, 57–64 (1990)

    Article  Google Scholar 

  34. Brostow, W., Kubát, J., Kubát, M.J.: Stress relaxation: experiment, theory, and computer simulation. Mech. Compos. Mater. 31, 432–445 (1996)

    Article  Google Scholar 

  35. Ohno, N., Miyake, T.: Stress relaxation in broken fibers in unidirectional composites: modeling and application to creep rupture analysis. Int. J. Plast. 15, 167–189 (1999)

    Article  Google Scholar 

  36. Onaka, S., Huang, J.H., Wakashima, K., Mori, T.: Kinetics of stress relaxation caused by the combination of interfacial sliding and diffusion: two-dimensional analysis. Acta Mater. 46, 3821–3828 (1998)

    Article  Google Scholar 

  37. Peterson, K.A., Dutta, I., Chen, M.W.: Diffusionally accommodated interfacial sliding in metal-silicon systems. Acta Mater. 51, 2831–2846 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China through Grant Nos. 11972226 and 11272206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglin Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For isotropic materials, the elastic stiffness C is expressed in the following \(6 \times 6\) matrix form:

$$\begin{aligned} {\mathbf{C}}=\left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} {\lambda +2\mu }&{} \lambda &{} \lambda &{} &{} &{} \\ \lambda &{} {\lambda +2\mu }&{} \lambda &{} &{} {\left[ 0 \right] _{3\times 3} }&{} \\ \lambda &{} \lambda &{} {\lambda +2\mu }&{} &{} &{} \\ &{} &{} &{} \mu &{} 0&{} 0 \\ &{} {\left[ 0 \right] _{3\times 3} }&{} &{} 0&{} \mu &{} 0 \\ &{} &{} &{} 0&{} 0&{} \mu \\ \end{array} \right] , \end{aligned}$$
(A1)

where \(\mu =E/[2(1+\nu )]\) and \(\lambda =2\mu \nu /(1-2\nu )\).

Unidirectional fiber-reinforced metal matrix composites under general transverse loading condition is treated as a plain strain problem in this study. The Eshelby tensor for a long fiber (plane strain) is expressed as

$$\begin{aligned} \mathbf{S}=\left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} {A(5-4\nu )}&{} {A(4\nu -1)}&{} {4A\nu }&{} &{} &{} \\ {A(4\nu -1)}&{} {A(5-4\nu )}&{} {4A\nu }&{} &{} {\left[ 0 \right] _{3\times 3} }&{} \\ 0&{} 0&{} 0&{} &{} &{} \\ &{} &{} &{} {1/4}&{} 0&{} 0 \\ &{} {\left[ 0 \right] _{3\times 3} }&{} &{} 0&{} {1/4}&{} 0 \\ &{} &{} &{} 0&{} 0&{} {A(3-4\nu )} \\ \end{array} \right] , \end{aligned}$$
(A2)

where \(A=1/[8(1-\nu )]\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Xu, W. & Guo, F. Creep behavior due to interface diffusion in unidirectional fiber-reinforced metal matrix composites under general loading conditions: a micromechanics analysis. Acta Mech 231, 1321–1335 (2020). https://doi.org/10.1007/s00707-019-02592-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02592-8

Navigation