Skip to main content

Advertisement

Log in

Nonlinear post-buckling and vibration of 2D penta-graphene composite plates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The newly developed penta-graphene is a two-dimensional (2D) carbon allotrope with promising mechanical properties. This paper investigates the nonlinear post-buckling and vibration of imperfect three-dimensional penta-graphene composite plates resting on elastic foundations and subjected to uniform external pressure and axial compressive load. The elastic constants of the single-layer penta-graphene are fully determined by the density functional theory by fitting the equation of strain energy to the density functional theory energy. Specifically, the elastic constant \(C_{66}\) which has not been considered by other authors is also determined. The motion and compatibility equations are derived based on the classical plate theory taking into account von Karman geometrical nonlinearity, initial geometrical imperfection and Pasternak type elastic foundations. For nonlinear post-buckling, the Bubnov–Galerkin method is applied to obtain the load–deflection amplitude curves while the Runge–Kutta method and harmonic balance method are used to obtain the deflection amplitude–time curves and the amplitude–frequency curves for nonlinear vibration. Numerical results show the effects of geometrical parameters, initial imperfection and elastic foundations on the nonlinear post-buckling and vibration of the imperfect 2D penta-graphene plates. The present results are also compared to others to validate the accuracy of the applied method and approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., Jena, P.: Penta-graphene: a new carbon allotrope. Radioelectron. Nanosyst. Inf. Technol. 7, 191–207 (2016). https://doi.org/10.17725/rensit.2015.07.191

    Article  Google Scholar 

  2. Li, Y.H., Yuan, P.F., Fan, Z.Q., Zhang, Z.H.: Electronic properties and carrier mobility for penta-graphene nanoribbons with nonmetallic-atom-terminations. Org. Electron. Phys. Mater. Appl. 59, 306–13 (2018). https://doi.org/10.1016/j.orgel.2018.05.039

    Article  Google Scholar 

  3. Enriquez, J.I.G., Villagracia, A.R.C.: Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene. Int. J. Hydrog. Energy 41, 12157–66 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.035

    Article  Google Scholar 

  4. Krishnan, R., Wu, S.Y., Chen, H.T.: Nitrogen-doped penta-graphene as a superior catalytic activity for CO oxidation. Carbon 132, 257–62 (2018). https://doi.org/10.1016/j.carbon.2018.02.064

    Article  Google Scholar 

  5. Zhang, C.P., Li, B., Shao, Z.G.: First-principle investigation of CO and CO\(_2\) adsorption on Fe-doped penta-graphene. Appl. Surf. Sci. 469, 641–6 (2019). https://doi.org/10.1016/j.apsusc.2018.11.072

    Article  Google Scholar 

  6. Le, M.Q.: Mechanical properties of penta-graphene, hydrogenated penta-graphene, and penta-CN\(_2\) sheets. Comput. Mater. Sci. 136, 181–90 (2017). https://doi.org/10.1016/j.commatsci.2017.05.004

    Article  Google Scholar 

  7. Quijano-Briones, J.J., Fernández-Escamilla, H.N., Tlahuice-Flores, A.: Chiral penta-graphene nanotubes: structure, bonding and electronic properties. Comput. Theor. Chem. 1108, 70–5 (2017). https://doi.org/10.1016/j.comptc.2017.03.019

    Article  Google Scholar 

  8. Sun, H., Mukherjee, S., Singh, C.V.: Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study. Phys. Chem. Chem. Phys. 18, 26736–42 (2016). https://doi.org/10.1039/c6cp04595b

    Article  Google Scholar 

  9. Winczewski, S., Rybicki, J.: Anisotropic mechanical behavior and auxeticity of penta-graphene: molecular statics/molecular dynamics studies. Carbon 146, 572–87 (2019). https://doi.org/10.1016/j.carbon.2019.02.042

    Article  Google Scholar 

  10. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, 5188 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  MathSciNet  Google Scholar 

  11. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  MathSciNet  Google Scholar 

  12. Som, N.N., Mankad, V.H., Dabhi, S.D., Patel, A., Jha, P.K.: Magnetic behavior study of samarium nitride using density functional theory. J. Magn. Magn. Mater. 448, 186–91 (2018). https://doi.org/10.1016/j.jmmm.2017.10.019

    Article  Google Scholar 

  13. Xin, S., Gao, W., Cao, D., Lv, K., Liu, Y., Zhao, C., et al.: The thermal transformation mechanism of chlorinated paraffins: an experimental and density functional theory study. J. Environ. Sci. (China) 75, 378–87 (2019). https://doi.org/10.1016/j.jes.2018.05.022

    Article  Google Scholar 

  14. Rapetti, D., Ferrando, R.: Density functional theory global optimization of chemical ordering in AgAu nanoalloys. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.11.143

    Article  Google Scholar 

  15. Liu, J., Zhang, Z., Yang, L., Fan, Y., Liu, Y.: Molecular structure and spectral characteristics of hyperoside and analysis of its molecular imprinting adsorption properties based on density functional theory. J. Mol. Graph. Model. 88, 228–36 (2019). https://doi.org/10.1016/j.jmgm.2019.01.005

    Article  Google Scholar 

  16. Rajeev Kumar, N., Radhakrishnan, R.: Electronic, optical and mechanical properties of lead-free halide double perovskites using first-principles density functional theory. Mater. Lett. 227, 289–91 (2018). https://doi.org/10.1016/j.matlet.2018.05.082

    Article  Google Scholar 

  17. Li, K., Li, H., Yan, N., Wang, T., Zhao, Z.: Adsorption and dissociation of CH\(_4\) on graphene: a density functional theory study. Appl. Surf. Sci. 459, 693–9 (2018). https://doi.org/10.1016/j.apsusc.2018.08.084

    Article  Google Scholar 

  18. Kenfack, S.C., Mounbou, S., Issofa, N., Fewo, S.I., Wirngo, A.V., Fobasso, M.F.C., et al.: Determination of the contribution of a phonon and a magnetic field to the chemical properties of the hydrogen molecule using the density functional theory approach. Phys. B Condens. Matter 560, 197–203 (2019). https://doi.org/10.1016/j.physb.2019.02.005

    Article  Google Scholar 

  19. Fujisaki, T., Staykov, A.T., Jing, Y., Leonard, K., Aluru, N.R., Matsumoto, H.: Understanding the effect of Ce and Zr on chemical expansion in yttrium doped strontium cerate and zirconate by high temperature X-ray analysis and density functional theory. Solid State Ionics 333, 1–8 (2019). https://doi.org/10.1016/j.ssi.2019.01.009

    Article  Google Scholar 

  20. Gupta, S., Dimakis, N.: Computational predictions of electronic properties of graphene with defects, adsorbed transition metal-oxides and water using density functional theory. Appl. Surf. Sci. 467–468, 760–72 (2019). https://doi.org/10.1016/j.apsusc.2018.09.260

    Article  Google Scholar 

  21. Aghajani, M., Hadipour, H., Akhavan, M.: Mechanical and chemical pressure effects on the AeFe\(_2\) As\(_2\) (Ae = Ba, Sr, Ca) compounds: density functional theory. Comput. Mater. Sci. 160, 233–44 (2019). https://doi.org/10.1016/j.commatsci.2019.01.021

    Article  Google Scholar 

  22. Maali, M., Kılıç, M., Yaman, Z., Ağcakoca, E., Aydın, A.C.: Buckling and post-buckling behavior of various dented cylindrical shells using CFRP strips subjected to uniform external pressure: comparison of theoretical and experimental data. Thin-Walled Struct. 137, 29–39 (2019). https://doi.org/10.1016/j.tws.2018.12.042

    Article  Google Scholar 

  23. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H., Naddaf, O.A.: Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods. Thin-Walled Struct. 113, 162–9 (2017). https://doi.org/10.1016/j.tws.2017.01.016

    Article  Google Scholar 

  24. Shakouri, M.: Free vibration analysis of functionally graded rotating conical shells in thermal environment. Compos. Part B Eng. 163, 574–84 (2019). https://doi.org/10.1016/j.compositesb.2019.01.007

    Article  Google Scholar 

  25. Zaoui, F.Z., Ouinas, D., Tounsi, A.: New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos. Part B Eng. 159, 231–47 (2019). https://doi.org/10.1016/j.compositesb.2018.09.051

    Article  Google Scholar 

  26. Duc, N.D., Hadavinia, H., Quan, T.Q., Khoa, N.D.: Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment. Eur. J. Mech. A/Solids 75, 355–66 (2019). https://doi.org/10.1016/j.euromechsol.2019.01.024

    Article  MathSciNet  MATH  Google Scholar 

  27. Ghorashi, M.: Nonlinear static and stability analysis of composite beams by the variational asymptotic method. Int. J. Eng. Sci. 128, 127–50 (2018). https://doi.org/10.1016/j.ijengsci.2018.03.011

    Article  MathSciNet  MATH  Google Scholar 

  28. Jassas, M.R., Bidgoli, M.R., Kolahchi, R.: Forced vibration analysis of concrete slabs reinforced by agglomerated SiO\(_2\) nanoparticles based on numerical methods. Construct. Build. Mater. 211, 796–806 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.263

    Article  Google Scholar 

  29. Hosseini-Hashemi, S., Khorshidi, K., Amabili, M.: Exact solution for linear buckling of rectangular Mindlin plates. J. Sound Vib. 315, 318–342 (2008). https://doi.org/10.1016/j.jsv.2008.01.059

    Article  Google Scholar 

  30. Mao, J.J., Zhang, W.: Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Compos. Struct. 216, 392–405 (2019). https://doi.org/10.1016/j.compstruct.2019.02.095

    Article  Google Scholar 

  31. Quan, T.Q., Duc, N.D.: Nonlinear thermal stability of eccentrically stiffened FGM double curved shallow shells. J. Therm. Stress. 5739, 1–26 (2016). https://doi.org/10.1080/01495739.2016.1225532

    Article  Google Scholar 

  32. Kolahchi, R., Hosseini, H., Esmailpour, M.: Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories. Compos. Struct. 157, 174–86 (2016). https://doi.org/10.1016/j.compstruct.2016.08.032

    Article  Google Scholar 

  33. Karami, B., Janghorban, M., Tounsi, A.: Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 129, 251–64 (2018). https://doi.org/10.1016/j.tws.2018.02.025

    Article  Google Scholar 

  34. Ansari, M.O., Mohammad, F.: Thermal stability and electrical properties of dodecyl-benzene-sulfonic- acid doped nanocomposites of polyaniline and multi-walled carbon nanotubes. Compos. Part B Eng. 43, 3541–8 (2012). https://doi.org/10.1016/j.compositesb.2011.11.031

    Article  Google Scholar 

  35. Hajmohammad, M.H., Maleki, M., Kolahchi, R.: Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer. Soil Dyn. Earthq. Eng. 110, 18–27 (2018). https://doi.org/10.1016/j.soildyn.2018.04.002

    Article  Google Scholar 

  36. Park, M., Choi, D.H.: A two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates. Appl. Math. Model. 61, 49–71 (2018). https://doi.org/10.1016/j.apm.2018.03.036

    Article  MathSciNet  Google Scholar 

  37. Yuan, Z., Kardomateas, G.A.: Nonlinear dynamic response of sandwich wide panels. Int. J. Solids Struct. 148–149, 110–21 (2018). https://doi.org/10.1016/j.ijsolstr.2017.09.028

    Article  Google Scholar 

  38. Kang, G.S., Kwak, B.S., Choe, H.S., Kweon, J.H.: Parametric study on the buckling load after micro-bolt repair of a composite laminate with delamination. Compos. Struct. 215, 1–12 (2019). https://doi.org/10.1016/j.compstruct.2019.01.091

    Article  Google Scholar 

  39. Kolahchi, R.: A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods. Aerosp. Sci. Technol. 66, 235–48 (2017). https://doi.org/10.1016/j.ast.2017.03.016

    Article  Google Scholar 

  40. Ong, S.P., Richards, W.D., Jain, A., Hautier, G., Kocher, M., Cholia, S., et al.: Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–9 (2013)

    Article  Google Scholar 

  41. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–30 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Volmir, A.S.: Non-linear dynamics of plates and shells. Science Edition, Nauka (1972)

  43. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2018.04. The authors are grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Dinh Duc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} \begin{aligned} b_1^1&=\frac{abh\lambda _m \delta _n }{16}\left[ {\begin{array}{l} P_1 \frac{\left( {Q_2 Q_4 -Q_1 Q_3 } \right) }{Q_2^2 -Q_1^2 }\lambda _m^4 +P_2 \frac{\left( {Q_2 Q_4 -Q_1 Q_3 } \right) }{Q_2^2 -Q_1^2 }\delta _n^4 \\ +P_3 \frac{\left( {Q_2 Q_4 -Q_1 Q_3 } \right) }{Q_2^2 -Q_1^2 }\lambda _{m}^{2} \delta _n^2 -P_4 \frac{\left( {Q_2 Q_3 -Q_1 Q_4 } \right) }{Q_2^2 -Q_1^2 } \\ -P_5 \frac{\left( {Q_2 Q_3 -Q_1 Q_4 } \right) }{Q_2^2 -Q_1^2 }+P_6 \lambda _m^4 +P_7 \delta _n^4 +P_8 \lambda _{m}^{2} \delta _{n}^{2} -k_1 -k_2 \left( {\lambda _{m}^{2} +\delta _{n}^{2}} \right) \\ \end{array}} \right] , \\ b_2^1&=-\frac{\lambda _m^{2}\delta _n^{2}}{12}\left( {P_1 \frac{1}{A_{22}^*}+P_2 \frac{1}{A_{11}^*}} \right) h^{2}, \\ b_3^1&=\left( {\frac{ab\lambda _m \delta _n }{256}\left( {\frac{\delta _n^4 }{A_{22}^*}+\frac{\lambda _m^4 }{A_{11}^*}} \right) } \right) h^{3}, \\ b_4^1&=-\left( {\frac{8\lambda _m \delta _n }{12}\frac{\left( {Q_2 Q_4 -Q_1 Q_3 } \right) }{Q_2^2 -Q_1^2 }} \right) h^{2}. \\ \end{aligned} \end{aligned}$$

Appendix B

$$\begin{aligned} \begin{aligned} b_1^2&=-\frac{1}{h\lambda _m^2 }\left[ \begin{array}{l} P_1 \frac{\left( {Q_2 Q_4 -Q_1 Q_3 } \right) }{Q_2^2 -Q_1^2 }\lambda _m^4 +P_2 \frac{\left( {Q_2 Q_4 -Q_1 Q_3 } \right) }{Q_2^2 -Q_1^2 }\delta _n^4 \\ +P_3 \frac{\left( {Q_2 Q_4 -Q_1 Q_3 } \right) }{Q_2^2 -Q_1^2 }\lambda _{m}^2 \delta _n^2 -P_4 \frac{\left( {Q_2 Q_3 -Q_1 Q_4 } \right) }{Q_2^2 -Q_1^2 } \\ -P_5 \frac{\left( {Q_2 Q_3 -Q_1 Q_4 } \right) }{Q_2^2 -Q_1^2 }+P_6 \lambda _{m}^4 +P_7 \delta _n^4 +P_8 \lambda _{m}^2 \delta _n^2 -k_1 -k_2 \left( {\lambda _m^2 +\delta _n^2 } \right) \\ \end{array} \right] , \\ b_2^2&=-\frac{4\delta _n }{3ab\lambda _m }\left( {P_1 \frac{1}{A_{22}^*}+P_2 \frac{1}{A_{11}^*}} \right) , \\ b_3^2&=\frac{1}{16h\lambda _m^2 }\left( {\frac{\delta _n^4 }{A_{22}^*}+\frac{\lambda _m^4 }{A_{11}^*}} \right) , \\ b_4^2&=-\frac{32\delta _n }{3ab\lambda _m }\frac{\left( {Q_2 Q_4 -Q_1 Q_3 } \right) }{Q_2^2 -Q_1^2 }. \end{aligned} \end{aligned}$$

Appendix C

$$\begin{aligned} \begin{aligned} m_1&=-\frac{ab}{4}\left[ P_1 \frac{(F_2 F_4 -F_1 F_3 )}{F_2^2 -F_1^2 }\lambda _m^4 +P_2 \frac{(F_2 F_4 -F_1 F_3 )}{F_2^2 -F_1^2 }\delta _n^4 +P_3 \frac{(F_2 F_4 -F_1 F_3 )}{F_2^2 -F_1^2 }\lambda _m^2 \delta _n^2 \right. \\&\quad \left. -P_4 \frac{(F_2 F_3 -F_1 F_4 )}{F_2^2 -F_1^2 }-P_5 \frac{(F_2 F_3 -F_1 F_4 )}{F_2^2 -F_1^2 }+P_6 \lambda _m^4 +P_7 \delta _n^4 +P_8 \lambda _{m}^{2} \delta _{n}^{2} -k_1 -k_2 (\lambda _{m}^{2} +\delta _n^2 )\right] , \\ m_2&=-\left[ {\frac{8}{3}\frac{(F_2 F_4 -F_1 F_3 )}{F_2^2 -F_1^2 }\lambda _m \delta _n } \right] ,\quad m_3 =-\left[ {\frac{1}{3}\lambda _m \delta _n \left( {P_1 \frac{1}{A_{22}^*}+P_2 \frac{1}{A_{11}^*}} \right) } \right] , \\ m_4&=-\left[ {-\frac{ab}{64}\left( {\frac{1}{A_{22}^*}\delta _n^4 +\frac{1}{A_{11}^*}\lambda _m^4 } \right) } \right] ,\quad m_5 =-\frac{4}{\lambda _m \delta _n }, m_6 =\rho _1 \frac{ab}{4}. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duc, N.D., Lam, P.T., Quan, T.Q. et al. Nonlinear post-buckling and vibration of 2D penta-graphene composite plates. Acta Mech 231, 539–559 (2020). https://doi.org/10.1007/s00707-019-02546-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02546-0

Navigation