Skip to main content
Log in

Influence of a 2D magnetic field on hygrothermal bending of sandwich CNTs-reinforced microplates with viscoelastic core embedded in a viscoelastic medium

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present work is concerned with the bending analysis of viscoelastic sandwich microplates with carbon nanotubes (CNTs)-reinforced face sheets under the effects of a 2D magnetic field as well as hygrothermal conditions. The core layer is assumed to be a fully homogeneous viscoelastic material, whereas the face sheets are made of a polymer matrix stiffened by uniformly distributed or functionally graded (FG) CNTs. The applied magnetic field results in a body force (Lorentz force) that is applied to each particle of the plate. In order to take into account the size effect, the modified couple stress theory is employed containing only one length scale parameter. The viscoelastic sandwich microplate is assumed to be resting on two layers of the foundations. The first is modeled as the viscoelastic Kelvin–Voigt model. However, the second represents the elastic Pasternak shear layer. Based on the sinusoidal four-variable plate theory, four governing equations are obtained involving Lorentz force and foundation interaction. An analytical solution for the obtained equations is presented to get the displacements and stresses of the reinforced sandwich plates. The present solution is examined by introducing comparison examples. Influences of the geometric parameters, material length scale parameter, magnetic field parameter, damping parameters, temperature rise, moisture concentration, and foundation coefficients on the bending of the FG-CNTs-reinforced viscoelastic sandwich microplates are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wuite, J., Adali, S.: Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis. Compos. Struct. 71(3–4), 388–96 (2005)

    Google Scholar 

  2. Bonnet, P., Sireude, D., Garnier, B., Chauvet, O.: Thermal properties and percolation in carbon nanotube-polymer composites. Appl. Phys. Lett. 91(20), 201910 (2007)

    Google Scholar 

  3. Zhu, R., Pan, E., Roy, A.K.: Molecular dynamics study of the stressestrain behavior of carbon-nanotube reinforced Epon 862 composites. Mater. Sci. Eng. A 447(1–2), 51–7 (2007)

    Google Scholar 

  4. Jia, J., Zhao, J., Xu, G., Di, J., Yong, Z., Tao, Y., et al.: A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon 49, 1333–9 (2011)

    Google Scholar 

  5. Ke, L.L., Yang, J., Kitipornchai, S.: Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 92(3), 676–683 (2010)

    Google Scholar 

  6. Alibeigloo, A.: Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity. Compos. Struct. 95, 612–622 (2013)

    Google Scholar 

  7. Alibeigloo, A., Emtehani, A.: Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method. Meccanica 50(1), 61–76 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Song, Z.G., Zhang, L.W., Liew, K.M.: Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory. Int. J. Mech. Sci. 105, 90–101 (2016)

    Google Scholar 

  9. Ansari, R., Pourashraf, T., Gholami, R., Shahabodini, A.: Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. Compos. Part B 90, 267–277 (2016)

    Google Scholar 

  10. Garcia-Macias, E., Rodriguez-Tembleque, L., Castro-Triguero, R., Saez, A.: Buckling analysis of functionally graded carbon nanotube-reinforced curved panels under axial compression and shear. Compos. Part B 108, 243–256 (2017)

    Google Scholar 

  11. Nejati, M., Eslampanah, A., Najafizadeh, M.: Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load. Int. J. Appl. Mech. 8(01), 1650008 (2016)

    Google Scholar 

  12. Pouresmaeeli, S., Fazelzadeh, S.A.: Uncertain buckling and sensitivity analysis of functionally graded carbon nanotube-reinforced composite beam. Int. J. Appl. Mech. 9(05), 1750071 (2017)

    Google Scholar 

  13. Pouresmaeeli, S., Fazelzadeh, S.A.: Frequency analysis of doubly curved functionally graded carbon nanotube-reinforced composite panels. Acta Mech. 227(10), 2765–2794 (2017)

    MathSciNet  Google Scholar 

  14. Sobhy, M.: Levy solution for bending response of FG carbon nanotube reinforced plates under uniform, linear, sinusoidal and exponential distributed loadings. Eng. Struct. 182, 198–212 (2019)

    Google Scholar 

  15. Alzari, V., Sanna, V., Biccai, S., Caruso, T., Politano, A., Scaramuzza, N., Sechi, M., Nuvoli, D., Sanna, R., Mariani, A.: Tailoring the physical properties of nanocomposite films by the insertion of graphene and other nanoparticles. Compos. Part B 60, 29–35 (2014)

    Google Scholar 

  16. Sobhy, M., Radwan, A.F.: A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates. Int. J. Appl. Mech. 9(01), 1750008 (2017)

    Google Scholar 

  17. Sobhy, M., Abazid, M.A.: Dynamic and instability analyses of FG graphene-reinforced sandwich deep curved nanobeams with viscoelastic core under magnetic field effect. Compos. Part B 174, 106966 (2019)

    Google Scholar 

  18. Khurram, A.A., Rakha, S.A., Ali, N., Zhou, P., Munir, A.: Effect of low-content carbon nanotubes on the dielectric and microwave absorption properties of graphite/polymer nanocomposites. J. Appl. Polym. Sci. 131(20), 40891 (2014)

    Google Scholar 

  19. Verre, S., Ombres, L., Politano, A.: Evaluation of the free-vibration frequency and the variation of the bending rigidity of graphene nanoplates: the role of the shape geometry and boundary conditions. J. Nanosci. Nanotechnol. 17(12), 8827–8834 (2017)

    Google Scholar 

  20. Gugliuzza, A., Politano, A., Drioli, E.: The advent of graphene and other two-dimensional materials in membrane science and technology. Curr. Opin. Chem. Eng. 16, 78–85 (2017)

    Google Scholar 

  21. Politano, A., Cupolillo, A., Di Profio, G., Arafat, H.A., Chiarello, G., Curcio, E.: When plasmonics meets membrane technology. J. Phys. Condens. Matter 28(36), 363003 (2016)

    Google Scholar 

  22. Gontarek, E., Macedonio, F., Militano, F., Giorno, L., Lieder, M., Politano, A., Drioli, E., Gugliuzza, A.: Adsorption-assisted transport of water vapour in super-hydrophobic membranes filled with multilayer graphene platelets. Nanoscale 11, 11521–11529 (2019)

    Google Scholar 

  23. Sobhy, M.: An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment. Int. J. Mech. Sci. 110, 62–77 (2016)

    Google Scholar 

  24. Sobhy, M., Alotebi, M.S.: Transient hygrothermal analysis of FG sandwich plates lying on a visco-Pasternak foundation via a simple and accurate plate theory. Arab. J. Sci. Eng. 43(10), 5423–5437 (2018)

    Google Scholar 

  25. Zenkour, A.M., Radwan, A.F.: Free vibration analysis of multilayered composite and soft core sandwich plates resting on WinklerPasternak foundations. J. Sandw. Struct. Mater. 20(2), 169–190 (2018)

    Google Scholar 

  26. Radwan, A.F.: Effects of non-linear hygrothermal conditions on the buckling of FG sandwich plates resting on elastic foundations using a hyperbolic shear deformation theory. J. Sandw. Struct. Mater. 21(1), 289–319 (2019)

    Google Scholar 

  27. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94, 1450–60 (2012)

    Google Scholar 

  28. Sankar, A., Natarajan, S., Ganapathi, M.: Dynamic instability analysis of sandwich plates with CNT reinforced facesheets. Compos. Struct. 146, 187–200 (2016)

    Google Scholar 

  29. Sankar, A., Natarajan, S., Zineb, T.B., Ganapathi, M.: Investigation of supersonic flutter of thick doubly curved sandwich panels with CNT reinforced facesheets using higher-order structural theory. Compos. Struct. 127, 340–355 (2015)

    Google Scholar 

  30. Mohammadimehr, M., Shahedi, S.: High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM. Compos. Part B 108, 91–107 (2017)

    Google Scholar 

  31. Natarajan, S., Haboussi, M., Manickam, G.: Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets. Compos. Struct. 113, 197–207 (2014)

    Google Scholar 

  32. Mirzaei, M., Kiani, Y.: Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. Acta Mech. 227(7), 1869–1884 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Jalali, S.K., Heshmati, M.: Buckling analysis of circular sandwich plates with tapered cores and functionally graded carbon nanotubes-reinforced composite face sheets. Thin Walled Struct. 100, 14–24 (2016)

    Google Scholar 

  34. Moradi-Dastjerdi, R., Momeni-Khabisi, H.: Vibrational behavior of sandwich plates with functionally graded wavy carbon nanotube-reinforced face sheets resting on Pasternak elastic foundation. J. Vib. Control 24(11), 2327–2343 (2018)

    MathSciNet  Google Scholar 

  35. Moradi-Dastjerdi, R., Malek-Mohammadi, H.: Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory. J. Sandw. Struct. Mater. 19(6), 736–769 (2017)

    Google Scholar 

  36. Mehar, K., Panda, S.K., Mahapatra, T.R.: Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure. Eur. J. Mech. A Solids 65, 384–396 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Ebrahimi, F., Farazmandnia, N.: Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory. Mech. Adv. Mater. Struct. 24(10), 820–829 (2017)

    Google Scholar 

  38. Kiani, Y.: Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets. J. Therm. Stress. 41(7), 866–882 (2018)

    Google Scholar 

  39. Sobhy, M., Zenkour, A.M.: Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate. Compos. Part B 154, 492–506 (2018)

    Google Scholar 

  40. Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity. Springer, New York (2008)

    Google Scholar 

  41. Arani, A.G., Jamali, M., Mosayyebi, M., Kolahchi, R.: Wave propagation in FG-CNT-reinforced piezoelectric composite micro plates using viscoelastic quasi-3D sinusoidal shear deformation theory. Compos. Part B 95, 209–224 (2016)

    Google Scholar 

  42. Li, L., Hu, Y., Ling, L.: Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Phys. E 75, 118–124 (2016)

    Google Scholar 

  43. Karami, B., Shahsavari, D., Li, L.: Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory. Phys. E 97, 317–327 (2018)

    Google Scholar 

  44. Arani, A.G., Haghparast, E., Zarei, H.B.: Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field. Phys. B 495, 35–49 (2016)

    Google Scholar 

  45. Zenkour, A.M., Sobhy, M.: Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric KelvinVoigt viscoelastic nanoplate embedded in a viscoelastic medium. Acta Mech. 229(1), 3–19 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Radwan, A.F., Sobhy, M.: A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load. Phys. B 538, 74–84 (2018)

    Google Scholar 

  47. Sobhy, M., Zenkour, A.M.: Nonlocal thermal and mechanical buckling of nonlinear orthotropic viscoelastic nanoplates embedded in a visco-Pasternak medium. Int. J. Appl. Mech. 10(08), 1850086 (2018)

    Google Scholar 

  48. Sobhy, M., Zenkour, A.M.: The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations. Mech. Adv. Mater. Struct. (2019). https://doi.org/10.1080/15376494.2018.1482579

    Article  Google Scholar 

  49. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H., Nouri, A.: Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. Int. J. Mech. Sci. 130, 534–545 (2017)

    Google Scholar 

  50. Liew, K.M., Lei, Z.X., Yu, J.L., Zhang, L.W.: Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach. Comput. Method Appl. Mech. Eng 268, 1–17 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    MATH  Google Scholar 

  52. Zenkour, A.M., Allam, M.N.M., Radwan, A.F.: Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations. Arch. Civ. Mech. Eng. 14, 144–159 (2014)

    Google Scholar 

  53. Abazid, M.A., Sobhy, M.: Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory. Microsyst. Technol. 24, 1227–1245 (2018)

    Google Scholar 

  54. Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–64 (2009)

    MATH  Google Scholar 

  55. Thai, H.-T., Kim, S.-E.: A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos. Part B 45, 1636–1645 (2013)

    Google Scholar 

Download references

Acknowledgements

The first author acknowledges the Deanship of Scientific Research, King Faisal University, for the financial support under Nasher Track (Grant No. 186261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Sobhy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhy, M., Radwan, A.F. Influence of a 2D magnetic field on hygrothermal bending of sandwich CNTs-reinforced microplates with viscoelastic core embedded in a viscoelastic medium. Acta Mech 231, 71–99 (2020). https://doi.org/10.1007/s00707-019-02531-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02531-7

Navigation