Abstract
Traditional finite element methods for the computation of the response of phononic crystals (PCs) with fluid-structure interaction (FSI) generally suffer from the dispersion error in the simulation, and the unavoidable uncertainties due to the manufactural errors and the material properties deviation. Therefore, it is important to develop an efficient numerical method to quantify the physical response of PCs with FSI. This paper presents a novel hybrid uncertain mass-redistributed finite element method (HUMR-FEM) to determine the uncertainty response of PCs with FSI. In this method, the MR-FEM is used to handle the FSI in PCs, which can minimize the dispersion error. The uncertainty of PCs is treated as random uncertainty with bounded distribution parameter instead of the precise values, and the response uncertainties are transformed into the deterministic computations of the extreme bounds of the statistical characteristics. Influences of the hybrid uncertainty on the physical responses in the design of PCs with FSI are discussed, and the accuracy and efficiency of the proposed method are validated through several numerical examples.
This is a preview of subscription content,
to check access.






















References
Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734 (2000). https://doi.org/10.1126/science.289.5485.1734
Lai, Y., Wu, Y., Sheng, P., Zhang, Z.-Q.: Hybrid elastic solids. Nat. Mater. 10, 620 (2011). https://doi.org/10.1038/nmat3043
Li, Q.Q., He, Z.C., Li, E.: Dissipative multi-resonator acoustic metamaterials for impact force mitigation and collision energy absorption. Acta Mech. 230(8), 2905–2935 (2019). https://doi.org/10.1007/s00707-019-02437-4
Li, Y., Wei, P., Wang, C.: Dispersion feature of elastic waves in a 1-D phononic crystal with consideration of couple stress effects. Acta Mech. 230(6), 2187–2200 (2019). https://doi.org/10.1007/s00707-019-02395-x
Zhang, B., Yu, J.G., Wang, Y.C., Li, L.J., Zhang, X.M.: Complete guided wave modes in piezoelectric cylindrical structures with fan-shaped cross section using the modified double orthogonal polynomial series method. Acta Mech. 230(1), 367–380 (2019). https://doi.org/10.1007/s00707-018-2266-4
Wu, Y., Lai, Y., Zhang, Z.-Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107(10), 105506 (2011). https://doi.org/10.1103/PhysRevLett.107.105506
Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun. 5(5), 5510 (2014)
Kaina, N., Lemoult, F., Fink, M., Lerosey, G.: Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525(7567), 77 (2015)
Oh, J.H., Seung, H.M., Kim, Y.Y.: Doubly negative isotropic elastic metamaterial for sub-wavelength focusing: design and realization. J. Sound Vib. 410, 169–186 (2017). https://doi.org/10.1016/j.jsv.2017.08.027
Zigoneanu, L., Popa, B.-I., Cummer, S.A.: Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater. 13, 352 (2014). https://doi.org/10.1038/nmat3901
Zhang, G.Y., Gao, X.L., Ding, S.R.: Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mech. 229(10), 4199–4214 (2018). https://doi.org/10.1007/s00707-018-2207-2
Kulkarni, P.P., Manimala, J.M.: Realizing passive direction-bias for mechanical wave propagation using a nonlinear metamaterial. Acta Mech. 230(7), 2521–2537 (2019). https://doi.org/10.1007/s00707-019-02415-w
Laubie, H., Monfared, S., Radjaï, F., Pellenq, R., Ulm, F.-J.: Disorder-induced stiffness degradation of highly disordered porous materials. J. Mech. Phys. Solids 106, 207–228 (2017). https://doi.org/10.1016/j.jmps.2017.05.008
Chen, N., Yu, D., Xia, B., Liu, J., Ma, Z.: Interval and subinterval homogenization-based method for determining the effective elastic properties of periodic microstructure with interval parameters. Int. J. Solids Struct. 106–107, 174–182 (2017). https://doi.org/10.1016/j.ijsolstr.2016.11.022
Li, E., He, Z.C., Hu, J.Y., Long, X.Y.: Volumetric locking issue with uncertainty in the design of locally resonant acoustic metamaterials. Comput. Methods Appl. Mech. Eng. 324, 128–148 (2017). https://doi.org/10.1016/j.cma.2017.06.005
He, Z.C., Hu, J.Y., Li, E.: An uncertainty model of acoustic metamaterials with random parameters. Comput. Mech. 62(5), 1023–1036 (2018). https://doi.org/10.1007/s00466-018-1548-y
Sukhovich, A., Jing, L., Page, J.H.: Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Phys. Rev. B 77(1), 014301 (2008). https://doi.org/10.1103/PhysRevB.77.014301
Zhang, S., Yin, L., Fang, N.: Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102(19), 194301 (2009). https://doi.org/10.1103/PhysRevLett.102.194301
Chen, J., Xia, B., Liu, J.: A sparse polynomial surrogate model for phononic crystals with uncertain parameters. Comput. Methods Appl. Mech. Eng. 339, 681–703 (2018). https://doi.org/10.1016/j.cma.2018.05.001
Wu, J., Zhang, Y., Chen, L., Luo, Z.: A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Model. 37(6), 4578–4591 (2013). https://doi.org/10.1016/j.apm.2012.09.073
Bernard, B.P., Owens, B.A.M., Mann, B.P.: Uncertainty propagation in the band gap structure of a 1D array of magnetically coupled oscillators. J. Vib. Acoust. 135(4), 041005-041005-041007 (2013). https://doi.org/10.1115/1.4023821
Xia, B., Yu, D., Liu, J.: Hybrid uncertain analysis of acoustic field with interval random parameters. Comput. Methods Appl. Mech. Eng. 256, 56–69 (2013). https://doi.org/10.1016/j.cma.2012.12.016
Elishakoff, I., Elettro, F.: Interval, ellipsoidal, and super-ellipsoidal calculi for experimental and theoretical treatment of uncertainty: which one ought to be preferred? Int. J. Solids Struct. 51(7), 1576–1586 (2014). https://doi.org/10.1016/j.ijsolstr.2014.01.010
He, Z.C., Wu, Y., Li, E.: Topology optimization of structure for dynamic properties considering hybrid uncertain parameters. Struct. Multidiscip. Optim. 57(2), 625–638 (2018). https://doi.org/10.1007/s00158-017-1769-2
Kafesaki, M., Economou, E.N.: Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys. Rev. B 60(17), 11993–12001 (1999). https://doi.org/10.1103/PhysRevB.60.11993
Shi, Z., Wang, Y., Zhang, C.: Band structure calculations of in-plane waves in two-dimensional phononic crystals based on generalized multipole technique. Appl. Math. Mech. 36(5), 557–580 (2015). https://doi.org/10.1007/s10483-015-1938-7
Axmann, W., Kuchment, P.: An efficient finite element method for computing spectra of photonic and acoustic band-gap materials: i. scalar case. J. Comput. Phys. 150(2), 468–481 (1999). https://doi.org/10.1006/jcph.1999.6188
Liu, Y., Gao, L-t: Explicit dynamic finite element method for band-structure calculations of 2D phononic crystals. Solid State Commun. 144(3), 89–93 (2007). https://doi.org/10.1016/j.ssc.2007.08.014
Li, F.-L., Wang, Y.-S., Zhang, C., Yu, G.-L.: Bandgap calculations of two-dimensional solid-fluid phononic crystals with the boundary element method. Wave Motion 50(3), 525–541 (2013). https://doi.org/10.1016/j.wavemoti.2012.12.001
Zheng, H., Zhang, C., Wang, Y., Chen, W., Sladek, J., Sladek, V.: A local RBF collocation method for band structure computations of 2D solid/fluid and fluid/solid phononic crystals. Int. J. Numer. Methods Eng. 110(5), 467–500 (2017). https://doi.org/10.1002/nme.5366
Zheng, H., Zhang, C., Wang, Y., Sladek, J., Sladek, V.: A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals. J. Comput. Phys. 305, 997–1014 (2016). https://doi.org/10.1016/j.jcp.2015.10.020
Li, E., He, Z.C., Wang, G., Liu, G.R.: An efficient algorithm to analyze wave propagation in fluid/solid and solid/fluid phononic crystals. Comput. Methods Appl. Mech. Eng. 333, 421–442 (2018). https://doi.org/10.1016/j.cma.2018.01.006
Li, F.-L., Wang, Y.-S., Zhang, C., Yu, G.-L.: Boundary element method for band gap calculations of two-dimensional solid phononic crystals. Eng. Anal. Bound. Elem. 37(2), 225–235 (2013). https://doi.org/10.1016/j.enganabound.2012.10.003
He, Z.C., Li, E., Liu, G.R., Li, G.Y., Cheng, A.G.: A mass-redistributed finite element method (MR-FEM) for acoustic problems using triangular mesh. J. Comput. Phys. 323, 149–170 (2016). https://doi.org/10.1016/j.jcp.2016.07.025
Yao, L., Huang, G., Chen, H., Barnhart, M.V.: A modified smoothed finite element method (M-SFEM) for analyzing the band gap in phononic crystals. Acta Mech. 230(6), 2279–2293 (2019). https://doi.org/10.1007/s00707-019-02396-w
Li, E., He, Z.C., Jiang, Y., Li, B.: 3D mass-redistributed finite element method in structural-acoustic interaction problems. Acta Mech. 227(3), 857–879 (2016). https://doi.org/10.1007/s00707-015-1496-y
Li, E., He, Z.C., Xu, X., Zhang, G.Y., Jiang, Y.: A faster and accurate explicit algorithm for quasi-harmonic dynamic problems. Int. J. Numer. Methods Eng. 108(8), 839–864 (2016). https://doi.org/10.1002/nme.5233
Li, E., He, Z.C., Zhang, Z., Liu, G.R., Li, Q.: Stability analysis of generalized mass formulation in dynamic heat transfer. Numer. Heat Transf. Part B Fundam. 69(4), 287–311 (2016). https://doi.org/10.1080/10407790.2015.1104215
Li, E., He, Z.C.: Development of a perfect match system in the improvement of eigenfrequencies of free vibration. Appl. Math. Model. 44, 614–639 (2017). https://doi.org/10.1016/j.apm.2017.02.013
Chadil, M.-A., Vincent, S., Estivalèzes, J.-L.: Accurate estimate of drag forces using particle-resolved direct numerical simulations. Acta Mech. 230(2), 569–595 (2019). https://doi.org/10.1007/s00707-018-2305-1
Liu, G.-R., Trung, N.: Smoothed Finite Element Methods. CRC Press, Boca Raton (2016)
Wang, G., Wen, J., Liu, Y., Wen, X.: Lumped-mass method for the study of band structure in two-dimensional phononic crystals. Phys. Rev. B 69(18), 184302 (2004). https://doi.org/10.1103/PhysRevB.69.184302
Li, E., He, Z.C., Wang, G., Jong, Y.: Fundamental study of mechanism of band gap in fluid and solid/fluid phononic crystals. Adv. Eng. Softw. 121, 167–177 (2018). https://doi.org/10.1016/j.advengsoft.2018.04.014
Long, X.Y., Jiang, C., Han, X.: New method for eigenvector-sensitivity analysis with repeated eigenvalues and eigenvalue derivatives. AIAA J. 53(5), 1226–1235 (2015). https://doi.org/10.2514/1.J053362
Kwon, Y.W., Bang, H.: The Finite Element Method Using MATLAB, 2nd edn. CRC Press, Inc., Boca Raton (2000)
Acknowledgements
The project was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51621004) and the Natural Science Foundation of China (Grant No. U1864207), the Opening Project of the Guangxi Key Laboratory of Automobile Components and Vehicle Technology of Guangxi University of Science and Technology (No. 2017GKLACVTKF01) and Guangxi Science and Technology Project (No. 2017AA10104), the opening project of the Hunan Provincial Key Laboratory of Vehicle Power and Transmission System (No. VPTS201903).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lin, X.Y., Li, E., He, Z.C. et al. A novel method to study the phononic crystals with fluid–structure interaction and hybrid uncertainty. Acta Mech 231, 321–352 (2020). https://doi.org/10.1007/s00707-019-02530-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00707-019-02530-8