Skip to main content
Log in

Wave propagation in one-dimensional infinite acoustic metamaterials with long-range interactions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the effect of long-range interactions on the wave propagation in one-dimensional acoustic metamaterials is investigated. The wave dispersion relations of these materials are expressed in closed-form solutions. In addition, a nonlocal continuum model is developed to approximate the behavior of the metamaterials with general long-range interactions. The influences of various parameters including the mass and stiffness ratios are also examined. The numerical results show that the long-range interactions affect the shape of the dispersion curves, while the range of the band-gap slightly changes. Furthermore, the results indicate that the proposed nonlocal model with appropriate nonlocal parameters can predict the dispersion behavior of the one-dimensional mass-in-mass system with long-range interactions very well, especially for the acoustic mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu, R., Huang, H.H., Huang, G.L., Sun, C.T.: Microstructure continuum modeling of an elastic metamaterial. Int. J. Eng. Sci. 49, 1477–1485 (2011)

    Article  Google Scholar 

  2. Wang, X.: Dynamic behaviour of a metamaterial system with negative mass and modulus. Int. J. Solids Struct. 51, 1534–1541 (2014)

    Article  Google Scholar 

  3. He, Z.C., Li, E., Wang, G., Li, G.Y., Xia, Z.: Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mech. 227, 3015–3030 (2016)

    Article  MathSciNet  Google Scholar 

  4. Zhou, X., Hu, G.: Dynamic effective models of two-dimensional acoustic metamaterials with cylindrical inclusions. Acta Mech. 224, 1233–1241 (2013)

    Article  MathSciNet  Google Scholar 

  5. Sang, S., Sandgren, E.: Study of two-dimensional acoustic metamaterial based on lattice system. J. Vib. Eng. Technol. 6, 513–521 (2018)

    Article  Google Scholar 

  6. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  7. Zhou, X., Liu, X., Hu, G.: Elastic metamaterials with local resonances: an overview. Theor. Appl. Mech. Lett. 2, 041001 (2012)

    Article  Google Scholar 

  8. Zhu, R., Liu, X.N., Hu, G.K., Yuan, F.G., Huang, G.L.: Microstructural designs of plate-type elastic metamaterial and their potential applications: a review. Int. J. Smart Nano Mater. 6, 14–40 (2015)

    Article  Google Scholar 

  9. Cselyuszka, N., Sĕcujski, M., Crnojević-Bengin, V.: Novel negative mass density resonant metamaterial unit cell. Phys. Lett. A 379, 33–36 (2015)

    Article  Google Scholar 

  10. Sang, S., Wang, Z.: A design of elastic metamaterials with multi-negative pass bands. Acta Mech. 229, 2647–2655 (2018)

    Article  Google Scholar 

  11. Beli, D., Arruda, J.R.F., Ruzzene, M.: Wave propagation in elastic metamaterial beams and plates with interconnected resonators. Int. J. Solids Struct. 139–140, 105–120 (2018)

    Article  Google Scholar 

  12. Yao, S., Zhou, X., Hu, G.: Experimental study on negative mass effective mass in a 1D mass-spring system. New J. Phys. 10, 043020 (2008)

    Article  Google Scholar 

  13. Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009)

    Article  Google Scholar 

  14. Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132, 031003 (2010)

    Article  Google Scholar 

  15. Manimala, J.M., Huang, H.H., Sun, C.T., Snyder, R., Bland, S.: Dynamic load mitigation using negative effective mass structures. Eng. Struct. 80, 458–468 (2014)

    Article  Google Scholar 

  16. Fang, X., Wen, J., Yin, J., Yu, D.: Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method. AIP Adv. 6, 121706 (2016)

    Article  Google Scholar 

  17. Fang, X., Wen, J., Bonello, B., Yin, J., Yu, D.: Wave propagation in one-dimensional nonlinear acoustic metamaterials. New J. Phys. 19, 053007 (2017)

    Article  Google Scholar 

  18. Terao, T.: Wave propagation in acoustic metamaterial double-barrier structures. Phys. Status Solidi A 213, 2773–2779 (2016)

    Article  Google Scholar 

  19. Kulkarni, P.P., Manimala, J.M.: Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials. J. Appl. Phys. 119, 245101 (2016)

    Article  Google Scholar 

  20. Hu, G., Tang, L., Das, R., Gao, S., Liu, H.: Acoustic metamaterials with coupled local resonators for broadband vibration suppression. AIP Adv. 7, 025211 (2017)

    Article  Google Scholar 

  21. Banerjee, A., Das, R., Calius, E.P.: Frequency graded 1D metamaterials: a study on the attenuation bands. J. Appl. Phys. 122, 075101 (2017)

    Article  Google Scholar 

  22. Al Ba’ba’a, H.B., Nouh, M.: Mechanics of longitudinal and flexural locally resonant elastic metamaterials using a structural power flow approach. Int. J. Mech. Sci. 122, 341–354 (2017)

    Article  Google Scholar 

  23. Cveticanin, L., Zukovic, M.: Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems. Commun. Nonlinear Sci. Numer. Simul. 51, 89–104 (2017)

    Article  MathSciNet  Google Scholar 

  24. Cveticanin, L., Zukovic, M., Cveticanin, D.: On the elastic metamaterial with negative effective mass. J. Sound Vib. 436, 295–309 (2018)

    Article  Google Scholar 

  25. Li, B., Alamri, S., Tan, K.T.: A diatomic elastic metamaterial for tunable asymmetric wave transmission in multiple frequency bands. Sci. Rep. 7, 6226 (2017)

    Article  Google Scholar 

  26. Comi, C., Driemeier, L.: Wave propagation in cellular locally resonant metamaterials. Lat. Am. J. Solids Struct. 15, e38 (2018)

    Article  Google Scholar 

  27. Xu, X., Barnhart, M.V., Li, X., Chen, Y., Huang, G.: Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. J. Sound Vib. 442, 237–248 (2019)

    Article  Google Scholar 

  28. Ponge, M.F., Poncelet, O., Torrent, D.: Dynamic homogenization theory for nonlocal acoustic metamaterials. Extreme Mech. Lett. 12, 71–76 (2017)

    Article  Google Scholar 

  29. Bacquet, C.L., Al Ba’ba’a, H., Frazier, M.J., Nouh, M., Hussein, M.I.: Metadamping: dissipation emergence in elastic metamaterials. Adv. Appl. Mech. 51, 115–164 (2018)

    Article  Google Scholar 

  30. Carcaterra, A., Coppo, F., Mezzani, F., Pensalfini, S.: Long-range retarded elastic metamaterials: wave-stopping, negative, and hypersonic or superluminal group velocity. Phys. Rev. Appl. 11, 014041 (2019)

    Article  Google Scholar 

  31. Zhou, Y., Wei, P., Tang, Q.: Continuum model of a one-dimensional lattice of metamaterials. Acta Mech. 227, 2361–2376 (2016)

    Article  MathSciNet  Google Scholar 

  32. Ghavanloo, E., Rafii-Tabar, H., Fazelzadeh, S.A.: Computational Continuum Mechanics of Nanoscopic Structures: Nonlocal Elasticity Approaches. Springer, Berlin (2019)

    Book  Google Scholar 

  33. Al Ba’ba’a, H., Nouh, M., Singh, T.: Formation of local resonance band gaps in finite acoustic metamaterials: a closed-form transfer function model. J. Sound Vib. 410, 429–446 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavanloo, E., Fazelzadeh, S.A. Wave propagation in one-dimensional infinite acoustic metamaterials with long-range interactions. Acta Mech 230, 4453–4461 (2019). https://doi.org/10.1007/s00707-019-02514-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02514-8

Navigation