Abstract
In this paper, a numerical study of slow flow through a filter viewed as a porous medium made of arrays of cubic solid particles or solid fibers of square cross section is considered. A double-scale asymptotic method is used to determine a system of equations that are then solved numerically to calculate the permeability. Simulations are made at the REV scale, and macroscopic properties are deduced. At the microscale, three arrangements (simple cubic, body-centered cubic and face-centered cubic) are analyzed. A parametric study is carried out, for both granular and fibrous cases, showing the porosity evolution with the size ratio between the solid particles and the periodic cell. At the macroscopic scale, the interest of this analysis is to compute the Darcy’s permeability of such arrays as a function of the porosity and the packing characteristics. Results are given over the full porosity range for SC, BCC and FCC arrays. On the other side, the microscopic analysis shows the influence of particle or fiber arrangement and size on the fluid velocity and the pressure field inside the porous structure.
This is a preview of subscription content, access via your institution.














Notes
- 1.
The dimensional quantities with subscript (r) are the reference ones used to normalize the dimensional Stokes equation.
- 2.
\(\mathbf {v^2}\) is identical to \(\mathbf {v^1}\) by permutation of direction 1 to 2.
References
- 1.
Auriault, J.L.: Heterogeneous medium. is an equivalent macroscopic description possible? Int. J. Eng. Sci. 29(7), 785–795 (1991)
- 2.
Auriault, J.L., Boutin, C., Geindreau, C.: Homogenization of Coupled Phenomena in Heterogenous Media. Wiley, London (2009)
- 3.
Babu, B.Z., Pillai, K.M.: Experimental investigation of the effect of fiber-mat architecture on the unsaturated flow in liquid composite molding. J. Compos. Mater. 38(3–4), 57–99 (2004)
- 4.
Bourbatache, K., Millet, O., Ait-Mokhtar, A., Amiri, O.: Modeling the chlorides transport in cementitious materials by periodic homogenization. Transp. Porous Med. 94(1), 437–459 (2012)
- 5.
Bourbatache, K., Millet, O., Ait-Mokhtar, A., Amiri, O.: Chloride transfer in cement-based materials. Part 2. Experimental study and numerical simulations. Int. J. Numer. Anal. Methods Geomech. 37, 1628–1641 (2013)
- 6.
Boutin, C.: Study of permeability by periodic and self-consistent homogenisation. Eur. J. Mech. A Solids 19(4), 603–632 (2000)
- 7.
Brown, R.C.: A many-fibre model of airflow through a fibrous filter. J. Aerosol Sci. 15(5), 583–593 (1984)
- 8.
Carman, P.C.: Fluid flow through granular beds. Chem. Eng. Res. Des. 75, S32–S48 (1997)
- 9.
Cheung, C.S., Cao, Y.H., Yan, Z.D.: Numerical model for particle deposition and loading in electret filter with rectangular split-type fibers. Comput. Mech. 35(6), 449–458 (2005)
- 10.
Cho, H., Jeong, N., Sung, H.J.: Permeability of microscale fibrous porous media using the lattice boltzmann method. Int. J. Heat Fluid Flow 44(3–4), 435–443 (2013)
- 11.
Costa, A.: Permeability-porosity relationship: a reexamination of the kozeny-carman equation based on a fractal pore-space geometry assumption. Geophys. Res. Lett. 33, 1–5 (2006)
- 12.
Crevacore, E., Tosco, T., Sethi, R., Boccardo, G., Marchisio, D.L.: Recirculation zones induce non-fickian transport in three-dimensional periodic porous media. Phys. Rev. E 94(5), 1–12 (2016)
- 13.
Davis, A.M.J., O’Neil, M.E., Dorrepaal, J.M., Ranger, K.B.: Separation from the surface of two equal spheres in Stokes flow. J. Fluid Mech. 77, 625–644 (1976)
- 14.
Davit, Y., Bell, C.G., Byrne, H.M., Chapman, L.A.C., Kimpton, L.S., Lang, G.E., Leonard, K.H.L., Oliver, J.M., Pearson, N.C., Shipley, R.J., Waters, S.L., Whiteley, J.P., Wood, B.D., Quintard, M.: Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare? Adv. Water Resour. 62(Part B), 178–206 (2013)
- 15.
Dhaniyala, S.: An asymmetrical, three-dimensional model for fibrous filters. Aerosol Sci. Technol. 30(4), 333–348 (1999)
- 16.
Drummond, J.E., Tahir, M.I.: Laminar viscous flow through regular arrays of parallel solid cylinders. Int. J. Multiphase flow 10(5), 515–540 (1984)
- 17.
Fan, J., Lominé, F., Hellou, M.: A numerical analysis of pressure drop and particle capture efficiency by rectangular fibers using lb-de methods. Acta Mech. 229, 1–18 (2018)
- 18.
Fardi, B., Liu, B.Y.H.: Flow field and pressure drop of filters with rectangular fibers. Aerosol Sci. Technol. 17(1), 36–44 (1992)
- 19.
Firdaouss, M., Duplessis, J.P.: On the prediction of darcy permeability in nonisotropic periodic two-dimensional porous media. J. Porous Media 7(2) (2004)
- 20.
Happel, J.: Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. AIChE J. 4(2), 197–201 (1958)
- 21.
Happel, J.: Viscous flow relative to arrays of cylinders. Am. Inst. Chem. Engng. J. 5, 174–177 (1959)
- 22.
Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Springer, Netherlands (1983)
- 23.
Hasimoto, H.: On the periodic fundamental solution of the stokes equation and their application to viscous how past a cubic array of spheres. J. Fluid Mech. 5, 317–328 (1959)
- 24.
Hellou, M., Martinez, J., El Yazidi, M.: Stokes flow through microstructural model of fibrous media. Mech. Res. Commun. 61(3–4), 97–103 (2004)
- 25.
Higdon, J.J.L., Ford, G.D.: Permeability of three-dimensional models of fibrous porous media. J. Fluid Mech 308, 341–361 (1996)
- 26.
Hommel, J., Coltman, E., Class, H.: Porosity-permeability relations for evolving pore-space: a review with a focuson (bio-)geochemicallyaltered porous media. Transp. Porous Media 124, 1–41 (2018)
- 27.
Hornung, U.: Homogenization and porous Media. IAM, (1997)
- 28.
Huang, H., Wang, K., Zhao, H.: Numerical study of pressure drop and diffusional collection efficiency of several typical non circular fibers in filtration. Powder Technol. 292, 232–241 (2016)
- 29.
Jackson, G.W., James, D.F.: The permeability of fibrous porous media. Can. J. Chem. Eng. 64, 364–374 (1986)
- 30.
Kadaksham, A., Pillapakkam, S.B., Singh, P.: Permeability of periodic arrays of spheres. Mech. Res. Commun. 32, 659–665 (2005)
- 31.
Kozeny, J.: Uber kapillare Leitung des Wassers im Boden-Aufstieg, Versickerung und Anwendung auf die Bewasserung, Sitzungsberichte der Akademie der Wissenschaften Wien. Mathematisch Naturwissenschaftliche Abteilung 136, 271–306 (1927)
- 32.
Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds number. J. Phys. Soc. Jpn. 14(4), 527–532 (1959)
- 33.
Niya, S.M.R., Selvadurai, A.P.S.: The estimation of permeability of a porous medium with a generalized pore structure by geometry identification. Phys. Fluids. 29, 037101 (2017)
- 34.
Ouyang, M., Liu, B.Y.H.: Analytical solution of flow field and pressure drop for filters with rectangular fibers. J. Aerosol Sci. 29(1), 187–196 (1998)
- 35.
Pierce, R.S., Falzon, B.G.: Simulating resin infusion through textile reinforcement materials for the manufacture of complex composite structures. Engineering 3, 596–607 (2017)
- 36.
Rocha, R.P.A., Cruz, M.E.: Calculation of the permeability and apparent permeability of three-dimensional porous media. Transp. Porous Med. 83(26), 349–373 (2010)
- 37.
Rodriguez, E., Giacomelli, F., Vazquez, A.: Permeability-porosity relationship in rtm for different fiberglass and natural reinforcements. J. Compos. Mater. 38(3), 259–268 (2004)
- 38.
Sanchez P.E.: Non Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 129, Berlin (1980)
- 39.
Sangani, A.S., Acrivos, A.: Slow flow past periodic arrays of cylinders with application to heat transfer. Int. J. Multiph. Flow 8(3), 193–206 (1982)
- 40.
Sangani, A.S., Acrivos, A.: Slow flow through a periodic array of spheres. Int. J. Multiph. Flow 8(4), 343–360 (1982)
- 41.
Stylianopoulos, T., Yeckel, A., Derby, J.J., Luo, X.J., Shephard, M.S., Sander, E.A., Barocas, V.H.: Permeability calculations in three-dimensional isotropic and oriented fiber networks. Phys. Fluids 20, 123601 (2008)
- 42.
Sun, Z., Tang, X., Cheng, G.: Numerical simulation for tortuosity of porous media. Microporous Mesoporous Mater. 173, 37–42 (2013)
- 43.
Tahir, M.A., Vahedi Tafreshi, H.: Influence of fiber orientation on the transverse permeability of fibrous media. Phys. Fluids 21(8), 083604 (2009)
- 44.
Tamayol, A., Bahrami, M.: Analytical determination of viscous permeability of fibrous porous media. Int. J. Heat Mass Transf. 52, 2407–2414 (2009)
- 45.
Tamayol, A., Bahrami, M.: Transverse permeability of fibrous porous media. Phys. Rev. E 83, 1–10 (2011)
- 46.
Tamayol, A., Wong, K.W., Bahrami, M.: Effects of microstructure on flow properties of fibrous porous media at moderate reynolds number. Phys. Rev. E 85, 026318 (2012)
- 47.
Taneda, S.: Visualization of separating stokes flows. J. Phys. Soc. Jpn. 46(6), 1935–1942 (1979)
- 48.
Tomadakis, M.M., Robertson, T.J.: Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. J. Compos. Mater. 39(2), 163–187 (2005)
- 49.
Valdés-Parada, F.J., Porter, M.L., Wood, B.D.: The role of tortuosity in upscaling. Transp. Porous Media 88(1), 1–30 (2011)
- 50.
Verleye, B., Lomov, S.V., Long, A., Verpoest, I., Roose, D.: Permeability prediction for the meso-macro coupling in the simulation of the impregnation stage of resin transfer moulding. Compos. Part A Appl. Sci. Manuf. 41(1), 29–35 (2010)
- 51.
Wang, C.Y.: Flow through a finned channel filled with a porous medium. Chem. Eng. Sci. 65, 1826–1831 (2010)
- 52.
Wang, C.Y.: Stokes flow through an array of rectangular fibers. Int. J. Multiph. Flow 22(1), 185–194 (1996)
- 53.
Wang, K., Zhao, H.: The influence of fiber geometry and orientation angle on filtration performance. Aerosol Sci. Technol. 49(2), 75–85 (2015)
- 54.
Yazdchi, K., Srivastava, S., Luding, S.: Microstructural effects on the permeability of periodic fibrous porous media. Int. J. Multiph. flow 37, 956–966 (2011)
- 55.
Zhong, W.H., Currie, I.G., James, D.F.: Creeping flow through a model fibrous porous medium. Exp. Fluids 40, 119–126 (2006)
- 56.
Zhu, C., Lin, C.-H., Cheung, C.S.: Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers. Powder Technol. 112(1), 149–162 (2000)
- 57.
Zick, A.A., Homsy, G.M.: Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115(26), 13 (1982)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bourbatache, M.K., Hellou, M. & Lominé, F. Two-scale analysis of the permeability of 3D periodic granular and fibrous media. Acta Mech 230, 3703–3721 (2019). https://doi.org/10.1007/s00707-019-02470-3
Received:
Revised:
Published:
Issue Date: