Advertisement

Dynamic response of submarine obstacles to two-phase landslide and tsunami impact on reservoirs

  • Jeevan KafleEmail author
  • Parameshwari Kattel
  • Martin Mergili
  • Jan-Thomas Fischer
  • Shiva P. Pudasaini
Original Paper
  • 41 Downloads

Abstract

Submarine landslides may generate super-tsunamis as they interact with water bodies such as oceans, mountain lakes or reservoirs. These water bodies may contain solid objects (obstacles), which substantially alter the mass flow dynamics and reduce the devastating effects of submarine landslide and tsunami. Submarine landslides, the related tsunamis, and their interactions with obstacles are more complex than subaerial landslides and their obstacle-interactions. In order to mitigate mountain and coastal hazards and maintain the integrity of a hydraulic reservoir, it is important to properly understand submarine landslide and tsunami interactions with obstacles. Existing approaches cannot take into account other important aspects of interfacial momentum transfer in mixture flows such as interfacial drag, buoyancy, mobility of the fluid at the particle surface, and virtual mass force, which play important roles in the more accurate prediction of mixture flow dynamics by dynamic interactions between the landslide mass and the water. In order to include these important physics of two-phase mass flows and especially to include dynamic interactions between the landslide mass and the water, we apply a general two-phase mass flow model (Pudasaini in J Geophysics Res 117:F03010, 2012. https://doi.org/10.1029/2011JF002186) and present high-resolution novel simulation results for a two-phase landslide impacting a fluid reservoir. Our simulations demonstrate that the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase in obstacle height, overtopping decreases, but the deflection and capturing (holding) of solid mass increases. Due to multiple obstacles, the moving mass decreases both in amount and speed showing fingering and meandering multiple streamed lobes. The varying location of the obstacles changes the deflection pattern, holding of mass, and tsunami intensity and mobility. Our simulations and findings enrich our understanding of mixing and separation between phases, generation and propagation of special solid and fluid structures, and transitions during the flow process, that may form a basis for the hazard mitigation in coastal regions.

Notes

Acknowledgements

We thank the Editor Professor Cristian Marchioli and reviewers for their constructive comments that helped to improve the manuscript substantially. We gratefully acknowledge the financial support provided by the German Research Foundation (DFG), by the research projects, PU 386/3-1:“Development of a GIS-based Open Source Simulation Tool for modeling General Avalanche and Debris Flows over Natural Topography” and PU 386/5-1: “A novel and unified solution to multi-phase mass flows”: U\(\_\)MultiSol. Parameshwari Kattel acknowledges University Grants Commission (UGC), Nepal, for the financial support provided as a PhD fellowship (PhD-2071/072-Sci. & Tech.-03).

References

  1. 1.
    Abadie, S., Morichon, D., Grilli, S., Glockner, S.: Numerical simulation of waves generated by landslides using a multiple-fluid Navier–Stokes model. Coast. Eng. 57(9), 779–794 (2010)CrossRefGoogle Scholar
  2. 2.
    Awal, R., Nakagawa, H., Fujita, M., Kawaike, K., Baba, Y., Zhang, H.: Experimental study on glacial lake outburst floods due to waves overtopping and erosion of moraine dam. Annu. Disaster Prev. Res. Inst. Kyoto Univ. 53B, 583–594 (2010)Google Scholar
  3. 3.
    Breien, H., De Bkasio, F.V., Elverhoi, A., Hoeg, K.: Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides (2008).  https://doi.org/10.1007/s10346-008-0118-3 Google Scholar
  4. 4.
    Bout, B., Lombardo, L., van Westen, C.J., Jetten, V.G.: Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures. Environ. Model. Softw. 105, 1–16 (2018).  https://doi.org/10.1016/j.envsoft.2018.03.017 CrossRefGoogle Scholar
  5. 5.
    Cecioni, C.: Numerical Modeling of Waves for a Tsunami Early Warning System. PhD Dissertation, University Degli Studi ROMA TRE (2010)Google Scholar
  6. 6.
    Cui, X., Gray, J.M.N.T.: Gravity-driven granular free-surface flow around a circular cylinder. J. Fluid Mech. 720, 314–337 (2013).  https://doi.org/10.1017/jfm.2013.42 CrossRefzbMATHGoogle Scholar
  7. 7.
    Domnik, B., Pudasaini, S.P., Katzenbach, R., Miller, S.A.: Coupling of full two-dimensional and depth-averaged models for granular flows. J. Non Newton. Fluid Mech. 201, 56–68 (2013)CrossRefGoogle Scholar
  8. 8.
    Douglas, S.: Numerical Modeling of Extreme Hydrodynamic Loading and Pneumatic Long Wave Generation: Application of a Multiphase Fluid Model. PhD Dissertation, University of Ottawa, Canada (2016)Google Scholar
  9. 9.
    Faug, T., Gauer, P., Lied, K., Naaim, M.: About observations of the overrun length of avalanches overtopping catching dams: cross-comparison of small scale laboratory experiments and observations from full-scale avalanches. J. Geophys. Res. (2008).  https://doi.org/10.1029/2007JF000854 Google Scholar
  10. 10.
    Faug, T., Chanut, B., Beguin, R., Naaim, M., Thibert, E., Baraudi, D.: A simple analytical model for pressure on obstacles induced by snow avalanches. Ann. Glaciol. 51(54), 1–8 (2010)CrossRefGoogle Scholar
  11. 11.
    Faug, T.: Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines. Phys. Rev. E (2015).  https://doi.org/10.1103/PhysRevE.92.062310 Google Scholar
  12. 12.
    Fischer, J.-T., Kowalski, J., Pudasaini, S.P.: Topographic curvature effects in applied avalanche modeling. Cold Reg. Sci. Technol. 74–75, 21–30 (2012)CrossRefGoogle Scholar
  13. 13.
    Fridman, A.M., Alprovich, L.S., Shemer, A.L., Pustil’nik, L., Shtivelman, D., Marchuk, A.G., Liberzon, D.: Tsunami wave suppression using submarine barriers. Phys. Uspekhi 53(8), 843–850 (2010)CrossRefGoogle Scholar
  14. 14.
    Fritz, H.M.: Initial Phase of Landslide Generated Impulse Waves. PhD Dissertation, Swiss Federal Institute of Technology, ETH Zürich, Switzerland (2002)Google Scholar
  15. 15.
    Fritz, H.M., Hager, W.H., Minor, H.-E.: Landslide generated impulse waves. 2. Hydrodynamic impact craters. Exp. Fluids 35, 520–532 (2003).  https://doi.org/10.1007/s00348-003-0660-7 CrossRefGoogle Scholar
  16. 16.
    Fritz, H.M., Hager, W.H., Minor, H.-E.: Near field characteristics of landslide generated impulse waves. J. Waterw. Port Coast. Ocean Eng. 130(6), 287–302 (2004).  https://doi.org/10.1061/(ASCE)0733-950X CrossRefGoogle Scholar
  17. 17.
    Glimsdal, S., Pedersen, G.K., Harbitz, C.B., Lovholt, F.: Dispersion of tsunamis: does it really matter? Nat. Hazards Earth Syst. Sci. 13, 1507–1526 (2013).  https://doi.org/10.5194/nhess-13-1507-2013 CrossRefGoogle Scholar
  18. 18.
    Gray, J.M.N.T.: Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441, 1–29 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gray, J.M.N.T., Tai, Y.-C., Noella, S.: Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161–181 (2003).  https://doi.org/10.1017/S0022112003005317 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Grilli, S.T., Vogelmann, S., Watts, P.: Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng. Anal. Bound. Elem. 26(4), 301–313 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Grilli, S.T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J., Watts, P.: Source constraints and model simulation of the December 26, 2004, Indian Ocean tsunami. J. Waterw. Port Coast. Ocean Eng. 133, 414–428 (2007)CrossRefGoogle Scholar
  22. 22.
    Grilli, S.T., O’Reilly, C., Harris, J.C., Bakhsh, T.T., Tehranirad, B., Banihashemi, S., Kirby, J.T., Baxtar, C.D.P., Eggeling, T., Ma, G., Shi, F.: Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD. Nat. Hazards 76(2), 705–746 (2015)CrossRefGoogle Scholar
  23. 23.
    Grilli, S.T., Shelby, M., Kimmoun, O., Dupont, G., Nicolsky, D., Ma, G., Kirby, J.T., Shi, F.: Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast. Nat. Hazards 86(1), 353–391 (2017)CrossRefGoogle Scholar
  24. 24.
    Hákonardóttir, K.M., Hogg, A.J., Jóhannesson, T., Tomasson, G.G.: A laboratory study of the retarding effects of braking mounds on snow avalanches. J. Glaciol. 49(165), 191–200 (2003)CrossRefGoogle Scholar
  25. 25.
    Hampton, M.A., Lee, H.J., Locat, J.: Submarine landslides. Rev. Geophys. 34, 33–59 (1996)CrossRefGoogle Scholar
  26. 26.
    Haugen, K.B., Lovholt, F., Harbitz, C.B.: Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar. Petrol. Geol. 22(1–2), 209–217 (2005)CrossRefGoogle Scholar
  27. 27.
    Heinrich, P.: Nonlinear water waves generated by submarine and aerial landslides. J. Waterw. Port Coast. Ocean Eng. 118, 249–266 (1992)CrossRefGoogle Scholar
  28. 28.
    Heinrich, P., Piatanesi, A., Hebert, H.: Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea events. Geophys. J. Int. 145, 97–111 (2001)CrossRefGoogle Scholar
  29. 29.
    Iverson, R.M.: The physics of debris flows. Rev. Geo Phys. 35(3), 245–296 (1997)CrossRefGoogle Scholar
  30. 30.
    Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. 106(B1), 537–552 (2001)CrossRefGoogle Scholar
  31. 31.
    Jiang, L., LeBlond, P.H.: Numerical modeling of an underwater Bingham plastic mudslide and the waves which it generates. J. Geophys. Res. 98(C6), 10303–10317 (1993).  https://doi.org/10.1029/93JC00393 CrossRefGoogle Scholar
  32. 32.
    Jóhannesson, T., Gauer, P., Issler, D., Lied, K.: The design of avalanche protection dams. Recent practical and theoretical developments. European Commission. Directorate General for Research (Barbolini M, Domaas U, Harbitz CB, Johannesson T, Gauer P, Issler D, Lied K, Faug T, Naaim M) (2009)Google Scholar
  33. 33.
    Kafle, J., Pokhrel, P.R., Khattri, K.B., Kattel, P., Tuladhar, B.M., Pudasaini, S.P.: Landslide-generated tsunami and particle transport in mountain lakes and reservoirs. Ann. Glaciol. 57(71), 232–244 (2016).  https://doi.org/10.3189/2016AoG71A034 CrossRefGoogle Scholar
  34. 34.
    Kattel, P., Khattri, K.B., Pokhrel, P.R., Kafle, J., Tuladhar, B.M., Pudasaini, S.P.: Simulating glacial lake outburst floods with a two-phase mass flow model. Ann. Glaciol. 57(71), 349–358 (2016).  https://doi.org/10.3189/2016AoG71A039 CrossRefGoogle Scholar
  35. 35.
    Kattel, P., Kafle, J., Fischer, J.-T., Mergili, M., Tuladhar, B.M., Pudasaini, S.P.: Interaction of two-phase debris flow with obstacles. Eng. Geol. 217, 197–242 (2018).  https://doi.org/10.1016/j.enggeo.2018.05.023 CrossRefGoogle Scholar
  36. 36.
    Kim, G.-B.: Numerical Simulation of Three-Dimensional Tsunami Generation by Subaerial Landslides. Master’s Thesis, Texas A&M University, Texas, USA (2012)Google Scholar
  37. 37.
    Kirby, J.T., Shi, F., Nicolsky, D., Misra, S.: The 27 April 1975 Kitimat, British Columbia, submarine landslide tsunami: a comparison of modeling approaches. Landslides 13(6), 1421–1434 (2016)CrossRefGoogle Scholar
  38. 38.
    Lecomte, I., Thollet, I., Juliussen, H., Hamran, S.E.: Using geophysics on a terminal moraine damming a glacial lake: the Flatbre debris flow case, Western Norway. Adv. Geosci. 14, 301–307 (2008)CrossRefGoogle Scholar
  39. 39.
    Legros, F.: The mobility of long-run out landslides. Eng. Geol. 63(3–4), 301–331 (2002)CrossRefGoogle Scholar
  40. 40.
    Liu, J.F., Mauzerall, D.L., Horowitz, L.W.: Analysis of seasonal and interannual variability in transpacific transport. J. Geophys. Res. Atmos. (2005).  https://doi.org/10.1029/2004JD005207 Google Scholar
  41. 41.
    Lovholt, F., Pedersen, G., Harbitz, C.B., Glimsdal, S., Kim, J.: On the characteristics of landslide tsunamis. Philos. Trans. R. Soc. A 373, 20140376 (2015).  https://doi.org/10.1098/rsta.2014.0376 CrossRefGoogle Scholar
  42. 42.
    Ma, G., Shi, F., Kirby, J.T.: Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model. 43, 22–35 (2012)CrossRefGoogle Scholar
  43. 43.
    Ma, G., Kirby, J.T., Hsu, T.J., Shi, F.: A two-layer granular landslide model for tsunami wave generation: theory and computation. Ocean Model. 93, 40–55 (2015)CrossRefGoogle Scholar
  44. 44.
    Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G., Lovholt, F.: Submarine landslides: processes, triggers and hazard prediction. Philos. Trans. R. Soc. A 364, 2009–2039 (2006)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Mergili, M., Fischer, J.-T., Krenn, J., Pudasaini, S.P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model Dev. 10(2), 553–569 (2017).  https://doi.org/10.5194/gmd-10-553-2017 CrossRefGoogle Scholar
  46. 46.
    Mergili, M., Emmer, A., Juřicová, A., Cochachin, A., Fischer, J.-T., Huggel, C., Pudasaini, S.P.: How well can we simulate complex hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the Santa Cruz Valley (Cordillera Blanca, Peru). Earth Surf. Process. Landf. 43, 1373–1378 (2018a).  https://doi.org/10.1002/esp.4318 CrossRefGoogle Scholar
  47. 47.
    Mergili, M., Frank, B., Fischer, J.-T., Huggel, C., Pudasaini, S.P.: Computational experiments on the 1962 and 1970 mass flow events at Nevado Huascaran (Peru) with r.avaflow: lessons learned for predictive mass flow simulations. Geomorphology 322, 15–28 (2018)CrossRefGoogle Scholar
  48. 48.
    Miao, H., Wang, G., Yin, K., Kamai, T., Li, Y.: Mechanism of the slow-moving landslides in Jurassic red-strata in the three gorges reservoir. Eng, Geol (2014).  https://doi.org/10.1016/j.enggeo.2013.12.017 Google Scholar
  49. 49.
    Mohammed, F.: Physical modeling of tsunamis generated by three-dimensional deformable granular landslides, PhD Dissertation. Georgia Institute of Technology (2010)Google Scholar
  50. 50.
    Mohammed, F., Fritz, H.M.: Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J. Geophys. Res. 117, 705–718 (2012).  https://doi.org/10.1029/2011JC007850 CrossRefGoogle Scholar
  51. 51.
    Monaghan, J.J., Kos, A.: Scott Russell’s wave generator. Phys. Fluids 12, 622–630 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Nettleton, I.M., Martin, S., Hencher, S., Moore, R.: Debris flow types and mechanisms. In: Winter, M.G., McGregor, F., Shackman, L. (eds.) Scottish Road Network Landslides Study, pp. 45–67. The Scottish Executive, Edinburgh (2005)Google Scholar
  53. 53.
    Oetjen, J., Engel, M., Brückner, H., Pudasaini, S.P., Schüttrumpf, H.: Enhanced field observation based physical and numerical modeling of tsunami induced boulder transport: phase 1: physical experiments. Coast. Eng. Proc. (2017) Google Scholar
  54. 54.
    Naaim, M., Faug, T., Naaim, F., Eckert, N.: Return period calculation and passive structure design at the Taconnaz avalanche path, France. Ann. Glaciol. 51(54), 89–97 (2010)CrossRefGoogle Scholar
  55. 55.
    Petrakov, D.A., Tutubalina, O.V., Aleinikov, A.A., Chernomorets, S.S., Evans, S.G., Kidyaeva, V.M., Krylenko, I.N., Norin, S.V., Shakhmina, M.S., Seynova, I.B.: Monitoring of Bashkara Glacier Lakes (Central Caucasus, Russia) and modelling of their potential outburst. Nat. Hazards (2011).  https://doi.org/10.1007/s11069-011-9983-5 Google Scholar
  56. 56.
    Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A 363(3), 1573–1601 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Pudasaini, S.P., Hutter, K.: Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 295, 193–208 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Pudasaini, S.P., Wang, Y., Hutter, K.: Modelling debris flows down general channels. Nat. Hazards Earth Syst. Sci. 5, 799–819 (2005)CrossRefGoogle Scholar
  59. 59.
    Pudasaini, S.P., Hutter, K.: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, Berlin (2007)Google Scholar
  60. 60.
    Pudasaini, S.P.: A general two-phase debris flow model. J. Geophysics. Res. 117, F03010 (2012).  https://doi.org/10.1029/2011JF002186 CrossRefGoogle Scholar
  61. 61.
    Pudasaini, S.P.: Dynamics of submarine debris flow and tsunami. Acta Mech. 225, 2423–2434 (2014).  https://doi.org/10.1007/s00707-014-1126-0 CrossRefGoogle Scholar
  62. 62.
    Pudasaini, S.P., Krautblatter, M.: A two-phase mechanical model for rock-ice avalanches. J. Geophys. Res. Earth Surf. (2014).  https://doi.org/10.1002/2014JF003183 Google Scholar
  63. 63.
    Qiao, C., Ou, G., Pan, H.: Numerical modelling of the long runout character of 2015 Shenzhen landslide with a general two-phase mass flow model. Bull. Eng. Geol. Environ. (2018).  https://doi.org/10.1007/s10064-018-1329-z Google Scholar
  64. 64.
    Sammarco, P., Renzi, E.: Landslide tsunamis propagating along a plane beach. J. Fluid Mech. 598, 107–119 (2008).  https://doi.org/10.1017/S0022112007009731 MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Savage, S.B., Hutter, K.: Dynamics of avalanches of granular materials from initiation to runout. Part I: analysis. Acta Mech. 86, 201–223 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Slingerl, R.L., Voight, B.: Occurrences, Properties, and Predictive Models of Landslide-generated Water Waves, pp. 317–397. Elsevier, Amsterdam (1979)Google Scholar
  68. 68.
    Takahashi, T.: Debris Flow. IAHR-AIRH Monograph Series A, Balkema, Rotterdam, Netherlands (1991) Google Scholar
  69. 69.
    Tai, Y.-C., Noelle, S., Gray, J.M.N.T., Hutter, K.: Shock-capturing and front-tracking methods for granular avalanches. J. Comput. Phys. 175(1), 269–301 (2002)CrossRefzbMATHGoogle Scholar
  70. 70.
    Viroulet, S., C’ebron, D., Kimmoun, O., Kharif, C.: Shallow water waves generated by subaerial solid land-slides. Geophys. J. Int. 193, 747–762 (2013).  https://doi.org/10.1093/gji/ggs133 CrossRefGoogle Scholar
  71. 71.
    Viroulet, S., Baker, J.L., Edwards, A.N., Johnson, C.G., Gjaltema, C., Clavel, P., Gray, J.M.N.T.: Multiple solutions for granular flow over a smooth two-dimensional bump. J. Fluid Mech. 815, 77–116 (2017).  https://doi.org/10.1017/jfm.2017.41 MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Vischer, D.L., Hager, W.H.: Dam Hydraulics, pp. 87–107. Wiley, Hoboken (1998)Google Scholar
  73. 73.
    Von Hardenberg, W.G.: Expecting disaster: the 1963 landslide of the Vajont Dam. Environ. Soc. Portal Arcadia 2011, 8 (2011)Google Scholar
  74. 74.
    Walder, J.S., Watts, P., Sorensen, O.E., Janssen, K.: Tsunamis generated by subaerial mass flows. J. Geophys. Res. 108(5), 2236–2255 (2003)Google Scholar
  75. 75.
    Ward, S.N., Day, S.: The 1963 landslide and flood at Vajont Reservoir Italy. A tsunami ball simulation. Ital. J. Geosci. 130(1), 16–26 (2011).  https://doi.org/10.3301/IJG.2010.21 Google Scholar
  76. 76.
    Worni, R., Stoffel, M., Huggel, C., Volz, C., Casteller, A., Luckman, B.: Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina). J. Hydrol. 444–445, 134–145 (2012)CrossRefGoogle Scholar
  77. 77.
    Yalciner, A.C., Pelinovsky, E., Okal, E., Synolakis, C.E.: Submarine Landslides and Tsunamis. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  78. 78.
    Yavari-Ramshe, S., Ataie-Ashtiani, B.: Numerical modeling of subaerial and submarine landslide-generated tsunami waves-recent advances and future challenges. Landslides 13(6), 1325–1368 (2016)CrossRefGoogle Scholar
  79. 79.
    Zhai, J., Yuan, L., Liu, W., Zhang, X.: Solving the Savage–Hutter equations for granular avalanche flows with a second-order Godunov type method on GPU. Int. J. Numer. Methods Fluids 77, 381–399 (2015).  https://doi.org/10.1002/fld.3988 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Jeevan Kafle
    • 1
    • 2
    Email author
  • Parameshwari Kattel
    • 1
    • 3
  • Martin Mergili
    • 4
    • 5
  • Jan-Thomas Fischer
    • 6
  • Shiva P. Pudasaini
    • 7
  1. 1.School of ScienceKathmandu UniversityBudol, Dhulikhel, KavrepalanchokNepal
  2. 2.Central Department of MathematicsTribhuvan UniversityKirtipur, KathmanduNepal
  3. 3.Department of Mathematics, Tri-Chandra Multiple CampusTribhuvan UniversityKathmanduNepal
  4. 4.Institute of Applied GeologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
  5. 5.Geomorphological Systems and Risk Research (ENGAGE), Department of Geography and Regional ResearchUniversity of ViennaViennaAustria
  6. 6.Department of Natural HazardsAustrian Research Center for Forests - BFWInnsbruckAustria
  7. 7.Institute of Geosciences and Meteorology, Geophysics SectionUniversity of BonnBonnGermany

Personalised recommendations