Skip to main content
Log in

Nonlinear buckling and postbuckling of sandwich FGM cylindrical shells reinforced by spiral stiffeners under torsion loads in thermal environment

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The main purpose of this paper is the investigation of the nonlinear torsional buckling and postbuckling of sandwich functionally graded cylindrical shells with the von Karman large deflection nonlinearities under thermal effect by an analytical method. The shell skin is reinforced by stringer, circular ring and spiral stiffeners, the material properties of shell skin and stiffeners are assumed to vary continuously through the thickness. The very large effect of spiral stiffeners on the buckling load-carrying capacity of a cylindrical shell in comparison with orthogonal stiffeners is clearly proved in numerical investigations. Based on the Donnell shell theory and the improved smeared stiffener technique for both thermal and mechanical terms of spiral stiffeners, the equilibrium equations of the shell are established in this paper. By using the Galerkin method, the postbuckling curves and critical buckling loads are obtained. The effects of temperature change, stiffeners, material and dimensional parameters on the nonlinear torsional buckling and postbuckling of shell are numerically analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Reddy, J.N., Starnes, J.H.: General buckling of stiffened circular cylindrical shells according to a layerwise theory. Comput. Struct. 49(4), 605–616 (1993)

    Article  MATH  Google Scholar 

  2. Pradhan, S.C., Loy, C.T., Lam, K.Y., Reddy, J.N.: Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Appl. Acoust. 61(1), 111–129 (2000)

    Article  Google Scholar 

  3. Shen, H.S.: Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments. Compos. Sci. Technol. 62(7–8), 977–987 (2002)

    Article  Google Scholar 

  4. Shen, H.S.: Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments. Eng. Struct. 25(4), 487–497 (2003)

    Article  Google Scholar 

  5. Shen, H.S.: Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties. Int. J. Solids Struct. 41(7), 1961–1974 (2004)

    Article  MATH  Google Scholar 

  6. Shen, H.S.: Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments. Compos. Sci. Technol. 65(11–12), 1675–1690 (2005)

    Article  Google Scholar 

  7. Shen, H.S., Noda, N.: Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments. Compos. Struct. 77(4), 546–560 (2007)

    Article  Google Scholar 

  8. Shariyat, M.: Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. Int. J. Mech. Sci. 50(12), 1561–1571 (2008)

    Article  Google Scholar 

  9. Liew, K.M., Zhao, X., Lee, Y.Y.: Postbuckling responses of functionally graded cylindrical shells under axial compression and thermal loads. Compos. Part B Eng. 43(3), 1621–1630 (2012)

    Article  Google Scholar 

  10. Shariyat, M., Asgari, D.: Non-linear thermal buckling and postbuckling analyses of imperfect variable thickness temperature-dependent bidirectional functionally graded cylindrical shells. Int. J. Press. Vessels Pip. 111–112, 310–320 (2013)

    Article  Google Scholar 

  11. Alibeigloo, A., Noee, A.R.P.: Static and free vibration analysis of sandwich cylindrical shell based on theory of elasticity and using DQM. Acta Mech. 228(12), 4123–4140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nash, W.A.: Buckling of initially imperfect cylindrical shells subjected to torsion. J. Appl. Mech. ASME 24, 125–130 (1957)

    MATH  Google Scholar 

  13. Yamaki, N., Matsuda, K.: Postbuckling behavior of circular cylindrical shells under torsion. Ingenieur-Archiv 45(2), 79–89 (1975)

    Article  MATH  Google Scholar 

  14. Dasgupta, A.: Free torsional vibration of thick isotropic incompressible circular cylindrical shell subjected to uniform external pressure. Int. J. Eng. Sci. 20(10), 1071–1076 (1982)

    Article  MATH  Google Scholar 

  15. Hui, D., Du, I.H.Y.: Initial postbuckling behavior of imperfect, antisymmetric cross-ply cylindrical shells under torsion. J. Appl. Mech. ASME 54(1), 174–180 (1987)

    Article  MATH  Google Scholar 

  16. Argento, A.: Dynamic stability of a composite circular cylindrical shell subjected to combined axial and torsional loading. J. Compos. Mater. 27(18), 1722–1738 (1993)

    Article  Google Scholar 

  17. Mao, R., Lu, G.: A study of elastic-plastic buckling of cylindrical shells under torsion. Thin-Walled Struct. 40(12), 1051–1071 (2002)

    Article  Google Scholar 

  18. Sofiyev, A.H.: Torsional buckling of cross-ply laminated orthotropic composite cylindrical shells subject to dynamic loading. Eur. J. Mech.- A/Solids 22(6), 943–951 (2003)

    Article  MATH  Google Scholar 

  19. Sofiyev, A.H., Schnack, E.: The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading. Eng. Struct. 26(10), 1321–1331 (2004)

    Article  Google Scholar 

  20. Zhang, X., Han, Q.: Buckling and post-buckling behaviors of imperfect cylindrical shells subjected to torsion. Thin-Walled Struct. 45(12), 1035–1043 (2007)

    Article  Google Scholar 

  21. Shen, H.S.: Boundary layer theory for the buckling and postbuckling of an anisotropic laminated cylindrical shell, part III: prediction under torsion. Compos. Struct. 82(3), 371–381 (2008)

    Article  Google Scholar 

  22. Shen, H.S., Xiang, Y.: Buckling and post-buckling of anisotropic laminated cylindrical shells under combined axial compression and torsion. Compos. Struct. 84(4), 375–386 (2008)

    Article  Google Scholar 

  23. Huang, H., Han, Q.: Nonlinear buckling of torsion-loaded functionally graded cylindrical shells in thermal environment. Eur. J. Mech.- A/Solids 29(1), 42–48 (2010)

    Article  MathSciNet  Google Scholar 

  24. Xu, X., Ma, J., Lim, C.W., Zhang, G.: Dynamic torsional buckling of cylindrical shells. Comput. Struct. 88(5–6), 322–330 (2010)

    Article  Google Scholar 

  25. Najafov, A.M., Sofiyev, A.H., Kuruoglu, N.: Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations. Meccanica 48(4), 829–840 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sofiyev, A.H., Kuruoglu, N.: Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium. Compos. Part B Eng. 45(1), 1133–1142 (2013)

    Article  Google Scholar 

  27. Shen, H.S.: Torsional buckling and postbuckling of FGM cylindrical shells in thermal environments. Int. J. Non. Linear. Mech. 44(6), 644–657 (2009)

    Article  MATH  Google Scholar 

  28. Najafizadeh, M.M., Hasani, A., Khazaeinejad, P.: Mechanical stability of functionally graded stiffened cylindrical shells. Appl. Math. Model. 33(2), 1151–1157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bich, D.H., Nam, V.H., Phuong, N.T.: Nonlinear postbuckling of eccentrically stiffened functionally graded plates and shallow shells. Vietnam J. Mech. 33(3), 131–147 (2011)

    Article  Google Scholar 

  30. Bich, D.H., Dung, D.V., Nam, V.H.: Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels. Compos. Struct. 94(8), 2465–2473 (2012)

    Article  Google Scholar 

  31. Bich, D.H., Dung, D.V., Nam, V.H.: Nonlinear dynamic analysis of eccentrically stiffened imperfect functionally graded doubly curved thin shallow shells. Compos. Struct. 96, 384–395 (2013)

    Article  Google Scholar 

  32. Bich, D.H., Dung, D.V., Nam, V.H., Phuong, N.T.: Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression. Int. J. Mech. Sci. 74, 190–200 (2013)

    Article  Google Scholar 

  33. Dung, D.V., Nam, V.H.: Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium. Eur. J. Mech.- A/Solids 46, 42–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Duc, N.D., Thang, P.T.: Nonlinear buckling of imperfect eccentrically stiffened metal-ceramic-metal S-FGM thin circular cylindrical shells with temperature-dependent properties in thermal environments. Int. J. Mech. Sci. 81, 17–25 (2014)

    Article  Google Scholar 

  35. Duc, N.D., Thang, P.T.: Nonlinear response of imperfect eccentrically stiffened ceramic-metal-ceramic FGM thin circular cylindrical shells surrounded on elastic foundations and subjected to axial compression. Compos. Struct. 110, 200–206 (2014)

    Article  Google Scholar 

  36. Duc, N.D., Thang, P.T.: Nonlinear response of imperfect eccentrically stiffened ceramicmetal-ceramic sigmoid functionally graded material (S-FGM) thin circular cylindrical shells surrounded on elastic foundations under uniform radial load. Mech. Adv. Mater. Struct. 22(12), 1031–1038 (2015)

    Article  Google Scholar 

  37. Duc, N.D., Thang, P.T.: Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations. Aerosp. Sci. Technol. 40, 115–127 (2015)

    Article  Google Scholar 

  38. Thang, P.T., Trung, N.T.: A new approach for nonlinear dynamic buckling of S-FGM toroidal shell segments with axial and circumferential stiffeners. Aerosp. Sci. Technol. 53, 1–9 (2016)

    Article  Google Scholar 

  39. Fallah, F., Taati, E.: On the nonlinear bending and post-buckling behavior of laminated sandwich cylindrical shells with FG or isogrid lattice cores. Acta Mech. 230, 2145–2169 (2019). https://doi.org/10.1007/s00707-019-02385-z

    Article  MathSciNet  Google Scholar 

  40. Dung, D.V., Hoa, L.K.: Research on nonlinear torsional buckling and post-buckling of eccentrically stiffened functionally graded thin circular cylindrical shells. Compos. Part B Eng. 51, 300–309 (2013)

    Article  Google Scholar 

  41. Dung, D.V., Hoa, L.K.: Nonlinear buckling and post-buckling analysis of eccentrically stiffened functionally graded circular cylindrical shells under external pressure. Thin-Walled Struct. 63, 117–124 (2013)

    Article  Google Scholar 

  42. Dung, D.V., Hoa, L.K.: Nonlinear torsional buckling and post-buckling of eccentrically stiffened FGM cylindrical shells in thermal environment. Compos. Part B Eng. 69, 378–388 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Phuong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I

In Eqs. (9) and (10),

$$\begin{aligned} e_{11}= & {} \frac{E_1 }{1-v^{2}}+\frac{E_{1s} b_s }{d_s }+2\frac{E_{1l} b_l }{d_l }\cos ^{4}\alpha ,\,\, e_{12} =\frac{vE_1 }{1-v^{2}}+2\frac{E_{1l} b_l }{d_l }\sin ^{2}\alpha \cos ^{2}\alpha ,\nonumber \\ e_{14}= & {} \frac{E_2 }{1-v^{2}}+\frac{E_{2s} b_s }{d_s }+2\frac{E_{2l} b_l }{d_l }\cos ^{4}\alpha ,\,\, e_{15} =\frac{vE_2 }{1-v^{2}}+\frac{E_{2s} b_s }{d_s }+2\frac{E_{2l} b_l }{d_l }\sin ^{2}\alpha \cos ^{2}\alpha ,\nonumber \\ e_{22}= & {} \frac{E_1 }{1-v^{2}}+\frac{E_{1r} b_r }{d_r }+2\frac{E_{1l} b_l }{d_l }\sin ^{4}\alpha ,\,\, e_{24} =\frac{vE_2 }{1-v^{2}}+2\frac{E_{2l} b_l }{d_l }\sin ^{2}\alpha \cos ^{2}\alpha ,\nonumber \\ e_{25}= & {} \frac{E_2 }{1-v^{2}}+\frac{E_{2r} b_r }{d_r }+2\frac{E_{2l} b_l }{d_l }\sin ^{4}\alpha ,\,\, e_{33} =\frac{E_1 }{2(1+v)}+2\frac{E_{1l} b_l }{d_l }\sin ^{2}\alpha \cos ^{2}\alpha ,\nonumber \\ e_{36}= & {} \frac{E_2 }{1+v}+4\frac{E_{2l} b_l }{d_l }\sin ^{2}\alpha \cos ^{2}\alpha ,\,\, e_{44} =\frac{E_3 }{1-v^{2}}+\frac{E_{3s} b_s }{d_s }+2\frac{E_{3l} b_l }{d_l }\cos ^{4}\alpha ,\nonumber \\ e_{45}= & {} \frac{vE_3 }{1-v^{2}}+2\frac{E_{3l} b_l }{d_l }\sin ^{2}\alpha \cos ^{2}\alpha ,\,\, e_{55} =\frac{E_3 }{1-v^{2}}+\frac{E_{3r} b_r }{d_r }+2\frac{E_{3l} b_l }{d_l }\sin ^{4}\alpha ,\nonumber \\ e_{66}= & {} \frac{E_3 }{1+v}+4\frac{E_{3l} b_l }{d_l }\sin ^{2}\alpha \cos ^{2}\alpha ,\,\, e_{63} =\frac{E_2 }{2(1+v)}+2\frac{E_{2l} b_l }{d_l }\sin ^{2}\alpha \cos ^{2}\alpha , \end{aligned}$$
(I.1)

in which

Case A:

$$\begin{aligned} E_1= & {} E_c h+E_{mc} \left( {h_c +\frac{h_t }{k_t +1} +\frac{h_b }{k_b +1}} \right) ,\nonumber \\ E_2= & {} E_{mc} \left[ \frac{h_c (h_t -h_b)}{2} +\frac{h_t^2 }{k_t +2}-\frac{hh_t }{2(k_t +1)} -\frac{h_b^2 }{k_b +2}+\frac{hh_b }{2(k_b +1)}\right] ,\nonumber \\ E_3= & {} E_c \frac{h^{3}}{12}+E_{mc} \left[ \frac{(h-2h_b)^{3} +(h-2h_t)^{3}}{24}+\frac{h_t^3 }{k_t +3}-\frac{hh_t^2 }{k_t +2} +\frac{h^{2}h_t }{4(k_t +1)}+\right. \nonumber \\&+\left. \frac{h_b^3 }{k_b +3}-\frac{hh_b^2 }{k_b +2} +\frac{h^{2}h_b}{4(k_b +1)}\right] , \nonumber \\ \phi _1= & {} \frac{1}{1-v}\int \limits _{-h/2}^{h/2} E_{sh} \alpha _{sh} \Delta T \mathrm{d}z =\frac{1}{1-v}\phi _1^{sh} . \end{aligned}$$
(I.2)

If \(\Delta T=\mathrm{const.}\), then

$$\begin{aligned} \phi _1^{sh}= & {} \Delta T\left[ \begin{array}{l} E_c \alpha _c h+(E_m \alpha _m -E_c \alpha _c)h_c \\ +(E_c \alpha _{mc} +E_{mc} \alpha _c)\left( \frac{h_t }{k_t +1} +\frac{h_b }{k_b +1}\right) +E_{mc} \alpha _{mc} \left( \frac{h_t }{2k_t +1}+\frac{h_b }{2k_b +1}\right) \\ \end{array}\right] , \end{aligned}$$
(I.3)
$$\begin{aligned} E_{1s}= & {} E_c h_s +\frac{E_{mc}h_s }{k_s +1},\nonumber \\ E_{2s}= & {} \frac{E_c}{2}hh_s \left( \frac{h_s }{h}+1\right) +E_{mc}h_s h\left( \frac{1}{k_s +2}\frac{h_s }{h} +\frac{1}{2k_s +2}\right) ,\nonumber \\ E_{3s}= & {} \frac{E_c}{3}h_s^3 \left( \frac{3}{4}\frac{h^{2}}{h_s^2} +\frac{3}{2}\frac{h}{h_s }+1\right) +E_{mc}h_s^3 \left( \frac{1}{k_s +3}+\frac{1}{k_s +2}\frac{h}{h_s} +\frac{1}{4(k_s +1)}\frac{h^{2}}{h_s^2}\right) ,\nonumber \\ \phi _{1x}^T= & {} \frac{b_s }{d_s }\int \limits _{h/2}^{h/2+h_s } {E_s \alpha _s \Delta T} \mathrm{d}z+\frac{b_l }{d_l }\int \limits _{h/2}^{h/2+h_l } {2E_l \alpha _l (\hbox {cos}^{6}\alpha +\hbox {sin}^{2}\alpha \hbox {cos}^{2}\alpha )\Delta T} \mathrm{d}z,\nonumber \\ E_{1r}= & {} E_ch_r +\frac{E_{mc}h_r }{k_r +1},\nonumber \\ E_{2r}= & {} \frac{E_c}{2}hh_r \left( \frac{h_r }{h}+1\right) +E_{mc}h_r h\left( \frac{1}{k_r +2}\frac{h_r }{h} +\frac{1}{2k_r +2}\right) ,\nonumber \\ E_{3r}= & {} \frac{E_c}{3}h_r^3 \left( \frac{3}{4}\frac{h^{2}}{h_r^2} +\frac{3}{2}\frac{h}{h_r }+1\right) +E_{mc}h_r^3 \left( \frac{1}{k_r +3}+\frac{1}{k_r +2}\frac{h}{h_r } +\frac{1}{4(k_r +1)}\frac{h^{2}}{h_r^2}\right) ,\nonumber \\ \phi _{1y}^T= & {} \frac{b_r }{d_r }\int \limits _{h/2}^{h/2+h_r } E_r \alpha _r \Delta T \mathrm{d}z+\frac{b_l }{d_l }\int \limits _{h/2}^{h/2+h_l} 2E_l \alpha _l \left( {\hbox {sin}^{6}\alpha +\hbox {sin}^{2}\alpha \hbox {cos}^{2}\alpha } \right) \Delta T \mathrm{d}z,\nonumber \\ E_{1l}= & {} E_c h_l +E_{mc} h_l \frac{1}{k_l +1},\nonumber \\ E_{2l}= & {} \frac{E_c }{2}h_l (h+h_l)+E_{mc} h_l^2 \left( \frac{1}{k_l +2}+\frac{h}{2h_l}\frac{1}{k_l +1}\right) ,\nonumber \\ E_{3l}= & {} \frac{E_c }{3}\left[ \left( \frac{h}{2}+h_l\right) ^{3} -\frac{h^{3}}{8}\right] +E_{mc} h_l^3 \left( \frac{1}{k_l +3} +\frac{h}{h_l }\frac{1}{k_l +2}+\frac{h^{2}}{4h_l^2} \frac{1}{k_l +1}\right) , \end{aligned}$$
(I.4)

If \(\Delta T = \mathrm{const.}\), then

$$\begin{aligned} \phi _{1x}^T= & {} \frac{b_s}{d_s}\Delta Th_s \left[ E_c \alpha _c +\frac{1}{k_s +1}(E_c \alpha _{mc} +E_{mc} \alpha _c) +\frac{1}{2k_s +1}E_{mc} \alpha _{mc}\right] \nonumber \\&+2\frac{b_l }{d_l }\Delta Th_l \left[ \begin{array}{l} E_c \alpha _c +\frac{1}{k_l +1}(E_c \alpha _{mc} +E_{mc} \alpha _c ) \\ +\frac{1}{2k_l +1}E_{mc} \alpha _{mc} \\ \end{array}\right] (\hbox {cos}^{6}\alpha +\hbox {sin}^{2}\alpha \hbox {cos}^{2}\alpha ), \nonumber \\ \phi _{1y}^T= & {} \frac{b_r }{d_r }\Delta Th_r \left[ E_c \alpha _c +\frac{1}{k_r +1}(E_c \alpha _{mc} +E_{mc} \alpha _c) +\frac{1}{2k_r +1}E_{mc} \alpha _{mc}\right] \nonumber \\&+2\frac{b_l }{d_l }\Delta Th_l \left[ \begin{array}{l} E_c \alpha _c +\frac{1}{k_l +1}(E_c \alpha _{mc} +E_{mc} \alpha _c) \\ +\frac{1}{2k_l +1}E_{mc} \alpha _{mc} \\ \end{array}\right] (\hbox {sin}^{6}\alpha +\hbox {sin}^{2}\alpha \hbox {cos}^{2}\alpha ). \end{aligned}$$
(I.5)

Case B: The expressions are similar to case A by replacing \(E_c\) with \(E_m\) and \(\alpha _c\) with \(\alpha _m\).

In the above, \(d_s ,d_r\) and \(d_l\) are the distances between two stringers, rings and spiral, respectively. Also, \(b_s\), \(b_r\) and \(b_l\) denote widths of stiffeners, respectively. The \(h_s\), \(h_r\) and \(b_l\) represent the height of the stiffeners (Fig. 1).

Appendix II

In Eqs. (11) and (12),

$$\begin{aligned} \Delta= & {} e_{22} e_{11} -e_{12}^2 ,\,\, e_{22}^{*} =e_{22} /\Delta ,\,\, e_{12}^{*} =e_{12} /\Delta ,\,\, e_{14}^{*} =(e_{12}e_{24} -e_{22} e_{14})/\Delta ,\nonumber \\ e_{15}^{*}= & {} (e_{12} e_{25} -e_{22} e_{15})/\Delta ,\,\, e_{16}^{*} =(e_{22} -e_{12})/\Delta ,\,\, e_{11}^{*} =e_{11} /\Delta ,\nonumber \\ e_{24}^{*}= & {} (e_{12} e_{14} -e_{11} e_{24})/\Delta ,\,\, e_{25}^{*} =(e_{12} e_{15} -e_{11} e_{25})/\Delta ,\,\, e_{26}^{*} =(e_{11} -e_{12})/\Delta ,\nonumber \\ e_{33}^{*}= & {} 1/e_{33} ,\,\, e_{36}^{*} =e_{36} /e_{33} . \end{aligned}$$
(II.1)
$$\begin{aligned} H_{14}^{*}= & {} e_{14} e_{22}^{*} -e_{24} e_{12}^{*} ,\,\, H_{44}^{*} =e_{44} +e_{24} e_{24}^{*} +e_{14} e_{14}^{*} ,\,\, H_{24}^{*} =e_{24} e_{11}^{*} -e_{14} e_{12}^{*} ,\nonumber \\ H_{45}^{*}= & {} e_{14} e_{15}^{*} +e_{24} e_{25}^{*} +e_{45} ,\,\, H_{46}^{*} =e_{14} e_{16}^{*} +e_{24} e_{26}^{*} ,\,\, H_{15}^{*} =e_{15} e_{22}^{*} -e_{25} e_{12}^{*} ,\nonumber \\ H_{54}^{*}= & {} e_{15} e_{14}^{*} +e_{25} e_{24}^{*} +e_{45} ,\,\, H_{25}^{*} =e_{25} e_{11}^{*} -e_{15} e_{12}^{*} ,\,\, H_{55}^{*} =e_{15} e_{15}^{*} +e_{25} e_{25}^{*} +e_{55} ,\nonumber \\ H_{56}^{*}= & {} e_{15} e_{16}^{*} +e_{25} e_{26}^{*} ,\,\, H_{63}^{*} =e_{63} e_{33}^{*} ,\,\, H_{66}^{*} =e_{66} -e_{63} e_{36}^{*} , \end{aligned}$$
(II.2)

Appendix III

In Eqs. (20, 24, 25),

$$\begin{aligned} T_1= & {} \frac{T_{01} L^{4}}{16S_{11} (m\pi )^{4}} =Q_{11} W_2 +Q_{12} W_1^2 ,\nonumber \\ T_2= & {} \frac{T_{02} R^{4}}{16n^{4}[S_{11} \lambda ^{4} +S_{12} \lambda ^{2}+S_{13}]}=Q_{21} W_1^2 ,\nonumber \\ T_3= & {} \frac{T_{03} R^{4}}{n^{4}\left[ S_{11} \left( \frac{m\pi R}{nL} -\lambda \right) ^{4}+S_{12} \left( \frac{m\pi R}{nL}-\lambda \right) ^{2} +S_{13}\right] }=Q_{31} W_1 +Q_{32} W_1 W_2 ,\nonumber \\ T_4= & {} \frac{T_{04} R^{4}}{n^{4}\left[ S_{11} \left( \frac{m\pi R}{nL} +\lambda \right) ^{4}+S_{12} \left( \frac{m\pi R}{nL}+\lambda \right) ^{2} +S_{13}\right] }=Q_{41} W_1 +Q_{42} W_1 W_2 ,\nonumber \\ T_5= & {} \frac{T_{05} R^{4}}{n^{4}\left[ S_{11} \left( 3\frac{m\pi R}{nL} +\lambda \right) ^{4}+S_{12} \left( 3\frac{m\pi R}{nL}+\lambda \right) ^{2} +S_{13}\right] }=Q_5 W_1 W_2 ,\nonumber \\ T_6= & {} \frac{-T_{05} R^{4}}{n^{4}\left[ S_{11} \left( 3\frac{m\pi R}{nL} -\lambda \right) ^{4}+S_{12} \left( 3\frac{m\pi R}{nL}-\lambda \right) ^{2} +S_{13}\right] }=Q_6 W_1 W_2 , \end{aligned}$$
(III.1)

in which

$$\begin{aligned} Q= & {} \left( \frac{m\pi }{L}\right) ^{2}+\frac{n^{2}\lambda ^{2}}{R^{2}},\,\, Q_{11} =\frac{4S_{11} (m\pi )^{2}R-L^{2}}{8S_{11} (m\pi )^{2}R},\,\, Q_{12} =\frac{(nL)^{2}}{32S_{11} (m\pi )^{2}R^{2}},\nonumber \\ Q_{21}= & {} \frac{(m\pi R)^{2}}{32(nL)^{2}[S_{11} \lambda ^{4} +S_{12} \lambda ^{2}+S_{13}]},\nonumber \\ Q_{31}= & {} \frac{\frac{S_{14}}{2}\left[ P^{2}+\left( 2\frac{mn\pi }{LR} \lambda \right) ^{2}\right] -\frac{P}{2}\left( \frac{1}{R}-S_{15} \frac{n^{2}}{R^{2}}\right) +\frac{S_{16} }{2}\frac{n^{4}}{R^{4}} +\frac{mn\pi }{LR}\lambda \left[ -2S_{14} P+\frac{1}{R}-S_{15} \frac{n^{2}}{R^{2}}\right] }{\frac{n^{4}}{R^{4}}\left[ S_{11} \left( \frac{m\pi R}{nL}-\lambda \right) ^{4}+S_{12} \left( \frac{m\pi R}{nL}-\lambda \right) ^{2}+S_{13}\right] },\nonumber \\ Q_{32}= & {} \frac{(m\pi R)^{2}}{2(nL)^{2}\left[ S_{11} \left( \frac{m\pi R}{nL}-\lambda \right) ^{4}+S_{12} \left( \frac{m\pi R}{nL}-\lambda \right) ^{2}+S_{13}\right] },\nonumber \\ Q_{41}= & {} \frac{-S_{14} \left[ P^{2} +\left( 2\frac{mn\pi }{LR}\lambda \right) ^{2}\right] +\frac{P}{R}\left( 1-S_{15} \frac{n^{2}}{R}\right) -S_{16} \frac{n^{4}}{R^{4}}+2\frac{mn\pi }{LR}\lambda \left[ -2S_{14} P+\frac{1}{R}-S_{15} \frac{n^{2}}{R^{2}}\right] }{2\frac{n^{4}}{R^{4}}\left[ S_{11} \left( \frac{m\pi R}{nL}+\lambda \right) ^{4} +S_{12} \left( \frac{m\pi R}{nL}+\lambda \right) ^{2}+S_{13}\right] },\nonumber \\ Q_{42}= & {} \frac{-(m\pi R)^{2}}{2(nL)^{2}\left[ S_{11} \left( \frac{m\pi R}{nL} +\lambda \right) ^{4}+S_{12} \left( \frac{m\pi R}{nL}+\lambda \right) ^{2} +S_{13} \right] },\nonumber \\ Q_5= & {} \frac{(m\pi R)^{2}}{2(nL)^{2}\left[ S_{11}\left( 3\frac{m\pi R}{nL} +\lambda \right) ^{4}+S_{12} \left( 3\frac{m\pi R}{nL}+\lambda \right) ^{2} +S_{13} \right] },\nonumber \\ Q_6= & {} \frac{-(m\pi R)^{2}}{2(nL)^{2}\left[ S_{11}\left( 3\frac{m\pi R}{nL} -\lambda \right) ^{4}+S_{12} \left( 3\frac{m\pi R}{nL}-\lambda \right) ^{2} +S_{13} \right] }, \end{aligned}$$
(III.2)
$$\begin{aligned} H_1= & {} F_{11} \left[ \left( \frac{(m\pi )^{2}}{L^{2}} +\frac{n^{2}}{R^{2}}\lambda ^{2}\right) ^{2} +\left( 2\frac{mn\pi }{LR}\lambda \right) ^{2}\right] +F_{12} \frac{n^{2}}{R^{2}}\left( \frac{(m\pi )^{2}}{L^{2}} +\frac{n^{2}}{R^{2}}\lambda ^{2}\right) +F_{13} \frac{n^{4}}{R^{4}} \nonumber \\&-Q_{31} \frac{n^{4}}{R^{4}}\left[ F_{14} \left( \frac{m\pi R}{nL}-\lambda \right) ^{4} +\left( F_{15} -\frac{R}{n^{2}}\right) \left( \frac{m\pi R}{nL}-\lambda \right) ^{2}+F_{16}\right] \nonumber \\&+Q_{41} \frac{n^{4}}{R^{4}}\left[ F_{14} \left( \frac{m\pi R}{nL}+\lambda \right) ^{4} +\left( F_{15} -\frac{R}{n^{2}}\right) \left( \frac{m\pi R}{nL}+\lambda \right) ^{2}+F_{16}\right] , \nonumber \\ H_2= & {} -Q_{32} \frac{n^{4}}{R^{4}}\left[ F_{14} \left( \frac{m\pi R}{nL}-\lambda \right) ^{4} +\left( F_{15} -\frac{R}{n^{2}}\right) \left( \frac{m\pi R}{nL}-\lambda \right) ^{2}+F_{16}\right] \nonumber \\&+\left( \frac{mn\pi }{LR}\right) ^{2} (-Q_{31} +Q_{41} -2Q_{11})+P_{42} \frac{n^{4}}{R^{4}} \left[ F_{14} \left( \frac{m\pi R}{nL}+\lambda \right) ^{4}\right. \nonumber \\&\left. +\left( F_{15} -\frac{R}{n^{2}}\right) \left( \frac{m\pi R}{nL}+\lambda \right) ^{2}+F_{16}\right] , \nonumber \\ H_3= & {} -2(Q_{21} +Q_{12})\left( \frac{mn\pi }{LR}\right) ^{2},\,\, H_4 =(-Q_{32} +Q_{42} -Q_5 +Q_6)\left( \frac{mn\pi }{LR}\right) ^{2},\nonumber \\ H_5= & {} -8 \frac{(m\pi )^{2}}{L^{2}}\left[ -2F_{11} \frac{(m\pi )^{2}}{L^{2}}+\left( 4F_{14} \frac{(m\pi )^{2}}{L^{2}} -\frac{1}{R}\right) Q_{11}\right] ,\nonumber \\ H_6= & {} 8\frac{(m\pi )^{2}}{L^{2}}Q_{12} \left( 4F_{14} \frac{(m\pi )^{2}}{L^{2}}-\frac{1}{R}\right) +2(Q_{31} -Q_{41})\frac{(mn\pi )^{2}}{(LR)^{2}},\nonumber \\ H_7= & {} 2\frac{(mn\pi )^{2}}{(LR)^{2}}(-Q_{32} +Q_{42} -Q_5 +Q_6). \end{aligned}$$
(III.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, V.H., Phuong, N.T. & Trung, N.T. Nonlinear buckling and postbuckling of sandwich FGM cylindrical shells reinforced by spiral stiffeners under torsion loads in thermal environment. Acta Mech 230, 3183–3204 (2019). https://doi.org/10.1007/s00707-019-02452-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02452-5

Navigation