Skip to main content

On Poisson’s functions of compressible elastomeric materials under compression tests in the framework of linear elasticity theory


We analyze the compression of a right cylinder made of an elastomeric material, sliding on a rigid plate in the framework of linear elasticity theory. Lubrication seems to reduce the heterogeneous effects of lateral bulging so that the deformations can be considered as “quasi-homogeneous.” As a result, we show that the ratio between the transversal deformation and axial strain is not a Poisson’s ratio but a Poisson’s function.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Suh, J.B., Kelly, S.G.: Stress response of the rubber block with frictional contact under axial loading. Int. J. Non-linear Mech. 68, 41–51 (2015)

    Article  Google Scholar 

  2. Banks, H.T., Pinter, G.A., Yeoh, O.H.: Analysis of bonded elastic blocks. Math. Comput. Model. 36, 875–888 (2002)

    Article  MATH  Google Scholar 

  3. Mott, P.H., Dorgan, J.R., Roland, C.M.: The bulk modulus and Poisson’s ratio of “incompressible” materials. J. Sound Vib. 312, 572–575 (2008)

    Article  Google Scholar 

  4. Gurvich, M.R., Fleischman, T.S.: A simple approach to characterize finite compressibility of elastomers. Rubber Chem. Technol. 76, 912–922 (2003)

    Article  Google Scholar 

  5. Habbit, S.I., Karlsson,: ABAQUS Documentation, Dassault Systèmes, RI, USA, (2013)

  6. Destrade, M., Gilchrist, M., Motherway, J., Murphy, J.G.: Slight compressibility and sensitivity to changes in Poisson’s ratio. Int. J. Numer. Methods Eng. 90, 403–411 (2012)

    Article  MATH  Google Scholar 

  7. Yu, J.H., Dillard, D.A., Lefebvre, D.R.: Pressure and shear stress distributions of an elastomer constrained by a cylinder of finite length. Int. J. Solids Struct. 38, 6839–6849 (2001)

    Article  MATH  Google Scholar 

  8. Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 21, 1–6 (2009)

    Google Scholar 

  9. Babaee, S., Shim, J., Weaver, J.C., Chen, E.R., Patel, N., Bertoldi, K.: 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25(36), 5044–5049 (2013)

    Article  Google Scholar 

  10. Lakes, R.: Foam structures with negative Poisson’s ratio. Science 235, 1038–1040 (1987)

    Article  Google Scholar 

  11. Lakes, R.S., Wineman, A.: On Poisson’s ratio in linear viscoelastic solids. J. Elast. 85, 45–63 (2006)

    Article  MATH  Google Scholar 

  12. Pritchard, R.H., Lava, P., Debruyne, D., Terentjev, E.M.: Precise determination of the Poisson ratio in soft materials with 2D digital image correlation. Soft Matter 9, 6037–6045 (2013)

    Article  Google Scholar 

  13. Blatz, P.J., Ko, W.L.: Application of finite elasticity theory to the deformation of rubbery materials. Trans. Soc. Rheol. 251, 223–251 (1962)

    Article  Google Scholar 

  14. Beatty, M.F., Stalnaker, D.O.: The Poisson function of finite elasticity. J. Appl. Mech. 53, 807–813 (1986)

    Article  MATH  Google Scholar 

  15. Mihai, L.A., Goriely, A.: How to characterise a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic elasticity. Proc. A R. Soc. A 473, 1–33 (2017)

    MATH  Google Scholar 

  16. Ciambella, J., Saccomandi, G.: A continuum hyperelastic model for auxetic materials. Proc. R. Soc. A 470, 1–14 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  17. Hilton, H.: Elastic and viscoelastic Poisson’s ratios: the theoretical mechanics perspective. Mater. Sci. Appl. 8, 232–291 (2017)

    Google Scholar 

  18. Tscharnuter, D., Jerabeck, M., Major, Z., Lang, R.W.: Time-dependent Poisson’s ratio of polypropylene compounds for various strain histories. Mech. Time-Depend. Mater. 15, 15–28 (2011)

    Article  Google Scholar 

  19. Tschoegl, N.W., Knauss, W., Emri, I.: Poisson’s ratio in linear viscoelasticity—a critical review. Mech. Time-Depend. Mater. 6, 3–51 (2002)

    Article  Google Scholar 

  20. Bechir, H., Chevalier, L., Chaouche, M., Boufala, K.: Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant. Eur. J. Mech. A-Solids 25, 110–124 (2006)

    Article  MATH  Google Scholar 

  21. Jerabeck, M., Major, Z., Lang, R.W.: Uniaxial compression testing of polymeric materials. Polym. Test. 29, 302–309 (2010)

    Article  Google Scholar 

  22. Bradley, G.L., Chang, P.G., McKenna, G.B.: Modeling using uniaxial data. J. Appl. Polym. Sci. 81, 837–848 (2001)

    Article  Google Scholar 

  23. Gent, A.N., Lindely, P.B.: The compression of bonded rubber blocks. Proc. Inst. Mech. Eng. A249, 195–205 (1959)

    Google Scholar 

  24. Gent, A.N., Meinecke, E.A.: Compression, bending and shear of bonded rubber blocks. Polym. Eng. Sci. 10(2), 48–53 (1970)

    Article  Google Scholar 

  25. Gent, A.N.: Compression of rubber blocks. Rubber Chem. Technol. 67, 917–931 (1994)

    Google Scholar 

  26. Williams, J.G., Gamonpilas, C.: Using the simple compression test to determine Young’s modulus, Poisson’s ratio and Coulomb friction coefficient. Int. J. Solids Struct. 45(16), 4448–4459 (2009)

    Article  MATH  Google Scholar 

  27. Horton, J.M., Tupholme, G.E., Gover, M.J.C.: Axial loading of bonded rubber blocks. J. Appl. Mech. 69, 836–843 (2002)

    Article  MATH  Google Scholar 

  28. Qiao, S., Nanshu, L.: Analytical solutions for bonded elastically compressible layers. Int. J. Solids Struct. 58, 353–365 (2015)

    Article  Google Scholar 

  29. Stefan, J., Sitzungber, K.: Versuche über die scheinbare Adhesion. Akad. Wiss. Math. Natur. Wien 69, 713–735 (1874)

    Google Scholar 

Download references


We would like to thank the reviewers for their careful reading of the original manuscript. Their comments and suggestions have been incorporated into the improved final version. Thanks also due Mr. N. Ghezzou, English Teacher in the Department of Mechanical Engineering, University of Bejaia, to refine the English of this paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to H. Bechir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

We consider the following boundary value problem:

$$\begin{aligned}&\bar{{m}}^{4}S^{4}\bar{{\phi }}-2 \bar{{m}}^{2}S^{2}\left( {{\bar{{\phi }}}''+\frac{{\bar{{\phi }}}'}{\bar{{r}}}} \right) +\frac{1}{\bar{{r}}}\left[ {\bar{{r}} \left( {{\bar{{\phi }}}''+\frac{{\bar{{\phi }}}'}{\bar{{r}}}} \right) ^{\prime }} \right] ^{\prime }=0 \end{aligned}$$


$$\begin{aligned}&\bar{{\phi }}\left( 0 \right) =\bar{{\phi }}\left( 1 \right) = 1\hbox { and }{\bar{{\phi }}}'\left( 0 \right) =0. \end{aligned}$$

We pose: \(\forall r \in ] {-R, R} [ , \bar{{\phi }}\left( {\bar{{r}}} \right) =\sum \nolimits _{n\ge 0} {a_n } \bar{{r}}^{n}\).

So, we have then

$$\begin{aligned} \bar{{\phi }}\left( 0 \right) =1\hbox { and }{\bar{{\phi }}}'\left( 0 \right) =0\Rightarrow a_0 =1\hbox { and }a_1 =0. \end{aligned}$$

We substitute Eq. (A.3.1) in (A.1), and by a changing of the indices, we get the following equation:

$$\begin{aligned} \left\{ {\begin{array}{ll} a_{n+1} =- \frac{2 \bar{{m}}^{2}S^{2}\left( {n-1} \right) ^{2}a_{n-1} -\bar{{m}}^{4}S^{4}a_{n-3} }{\left( {n+1} \right) ^{2}\left( {n-1} \right) ^{2}}, &{}\quad \hbox {if }n\ge 3; \\ a_n =0, &{}\quad \hbox {if }n=2p+1, \forall p\ge 0 \\ \end{array}} \right. \end{aligned}$$

In order to obtain the coefficients \(a_{n}\), we vary the value of \(a_{2}\) until to satisfy the boundary condition \(\bar{{\phi }}\left( 1 \right) =1\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bechir, H., Djema, A. & Bouzidi, S. On Poisson’s functions of compressible elastomeric materials under compression tests in the framework of linear elasticity theory. Acta Mech 230, 2491–2504 (2019).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: