Skip to main content
Log in

Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive, and non-spherical rigid bodies

  • Review and Perspective in Mechanics
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We discuss methods to compute the flow of non-Brownian, non-cohesive, and non-spherical rigid bodies immersed in a single homogeneous fluid. We address both the case of negligible effect of the surrounding fluid corresponding to dry granular flows in which the dynamics of rigid bodies is controlled by gravity and collisions only, and the case of non-negligible effect of the surrounding fluid in which rigid bodies not only exchange momentum by collisions but also by two-way coupling with the surrounding fluid flow. We review the common computational methods to compute rigid body collisions and the two-way interaction of rigid bodies with the surrounding fluid flow. We specifically discuss the extension or applicability of these methods to non-spherical rigid bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Ai, J., Chen, J., Rotter, J., Ooi, J.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206(3), 269–282 (2011)

    Google Scholar 

  3. Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Ann. Rev. Fluid Mech. 42, 439–472 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Akiki, G., Balachandar, S.: Immersed boundary method with non-uniform distribution of Lagrangian markers for a non-uniform Eulerian mesh. J. Comput. Phys. 307, 34–59 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Alam, M., Luding, S.: Rheology of bidisperse granular mixtures via event-driven simulations. J. Fluid Mech. 476, 69–103 (2003)

    MATH  Google Scholar 

  6. Alonso-Marroquin, F., Wang, Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11(5), 317–329 (2009)

    MATH  Google Scholar 

  7. Apte, S.V., Martin, M., Patankar, N.A.: A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows. J. Comput. Phys. 228(8), 2712–2738 (2009)

    MATH  Google Scholar 

  8. Ayala, D., Brunet, P., Juan, R., Navazo, I.: Object representation by means of nonminimal division quadtrees and octrees. ACM Trans. Graph. (TOG) 4(1), 41–59 (1985)

    Google Scholar 

  9. Azéma, E., Radjai, F., Dubois, F.: Packings of irregular polyhedral particles: Strength, structure, and effects of angularity. Phys. Rev. E 87(6), 062203 (2013)

    Google Scholar 

  10. Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. In: ACM SIGGRAPH Computer Graphics, vol. 23, pp. 223–232. ACM (1989)

  11. Baraff, D.: Non-penetrating rigid body simulation. In: State of the Art Reports: Proceedings of Eurographics 93 (Sept 1993). Eurographics Association, Barcelona (1993)

  12. Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. 1(1), 11–23 (1981)

    MathSciNet  Google Scholar 

  13. Bartuschat, D., Rüde, U.: A scalable multiphysics algorithm for massively parallel direct numerical simulations of electrophoretic motion. J. Comput. Sci. 27, 147–167 (2018)

    Google Scholar 

  14. Bathurst, R.J., Rothenburg, L.: Observations on stress-force-fabric relationships in idealized granular materials. Mech. Mater. 9(1), 65–80 (1990)

    Google Scholar 

  15. Beetstra, R., Van der Hoef, M., Kuipers, J.: Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres. AIChE J. 53(2), 489–501 (2007)

    Google Scholar 

  16. Bender, J., Erleben, K., Trinkle, J.: Interactive simulation of rigid body dynamics in computer graphics. In: Computer Graphics Forum, vol. 33, pp. 246–270. Wiley Online Library (2014)

  17. Bossis, G., Brady, J.F.: Dynamic simulation of sheared suspensions. I. General method. J. Chem. Phys. 80(10), 5141–5154 (1984)

    Google Scholar 

  18. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13(11), 3452–3459 (2001)

    MATH  Google Scholar 

  19. Brady, J., Bossis, G.: Stokesian dynamics. Ann. Rev. Fluid Mech. 20, 111–157 (1988)

    Google Scholar 

  20. Breugem, W.: A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231(13), 4469–4498 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Calhoun, D., LeVeque, R.J.: A Cartesian grid finite-volume method for the advection-diffusion equation in irregular geometries. J. Comput. Phys. 157(1), 143–180 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Chang, J.-W., Wang, W., Kim, M.-S.: Efficient collision detection using a dual OBB-sphere bounding volume hierarchy. Comput. Aided Des. 42(1), 50–57 (2010)

    Google Scholar 

  23. Chesshire, G., Henshaw, W.D.: Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys. 90(1), 1–64 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Chesshire, G., Henshaw, W.D.: A scheme for conservative interpolation on overlapping grids. SIAM J. Sci. Comput. 15(4), 819–845 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Chung, M.-H.: An adaptive Cartesian cut-cell/level-set method to simulate incompressible two-phase flows with embedded moving solid boundaries. Comput. Fluids 71, 469–486 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Cleary, P.: Large scale industrial DEM modelling. Eng. Comput. 21(2), 169–204 (2004)

    MATH  Google Scholar 

  27. Cleary, P.: DEM prediction of industrial and geophysical particle flows. Particuology 8, 106–118 (2010)

    Google Scholar 

  28. Cleary, P., Sawley, M.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)

    MATH  Google Scholar 

  29. Cleary, P.W., Stokes, N., Hurley, J.: Efficient collision detection for three dimensional super-ellipsoidal particles. In: Proceedings of 8th International Computational Techniques and Applications Conference CTAC97, Adelaide (1997)

  30. Climent, E., Maxey, M.: Numerical simulations of random suspensions at finite Reynolds numbers. Int. J. Multiph. Flow 29(4), 579–601 (2003)

    MATH  Google Scholar 

  31. Cottle, R.W.: Linear complementarity problem. In: Encyclopedia of Optimization, pp. 1873–1878. Springer (2008)

  32. Coumans, E.: Bullet physics simulation. In: ACM SIGGRAPH 2015 Courses, SIGGRAPH ’15. ACM (2015)

  33. Cundall, P.: Formulation of a three-dimensional distinct element model—part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988)

    Google Scholar 

  34. Cundall, P., Strack, O.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Google Scholar 

  35. D’Avino, G., Hulsen, M.: A comparison between a collocation and weak implementation of the rigid-body motion constraint on a particle surface. Int. J. Numer. Methods Fluids 64(9), 1014–1040 (2010)

    MATH  Google Scholar 

  36. Deen, N., Kriebitzsch, S., van der Hoef, M., Kuipers, J.: Direct numerical simulation of flow and heat transfer in dense fluid-particle systems. Chem. Eng. Sci. 81, 329–344 (2012)

    Google Scholar 

  37. Deen, N., Kuipers, J.: Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems. Ind. Eng. Chem. Res. 52(33), 11266–11274 (2013)

    Google Scholar 

  38. Deen, N., van Sint Annaland, M., Kuipers, J.: Direct numerical simulation of complex multi-fluid flows using a combined front tracking and immersed boundary method. Chem. Eng. Sci. 64(9), 2186–2201 (2009)

    Google Scholar 

  39. Diaz-Goano, C., Minev, P., Nandakumar, K.: A fictitious domain/finite element method for particulate flows. J. Comput. Phys. 192(1), 105–123 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Diebel, J.: Representing attitude: Euler angles, unit quaternions, and rotation vectors. Technical report, Stanford University (2006)

  41. Donea, J., Giuliani, S., Halleux, J.-P.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33(1–3), 689–723 (1982)

    MATH  Google Scholar 

  42. Donea, J., Huerta, A., Ponthot, J.P., Rodriguez-Ferran, A.: Arbitrary Lagrangian-Eulerian methods. In: Stein, E., de Borst, R., Hughes, T. (eds.) Encyclopedia of Computational Mechanics: Fundamentals, vol. 1, pp. 1–24. Wiley, New York (2004)

    Google Scholar 

  43. Donev, A., Torquato, S., Stillinger, F.H.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. J. Comput. Phys. 202(2), 737–764 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Donev, A., Torquato, S., Stillinger, F.H.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Applications to ellipses and ellipsoids. J. Comput. Phys. 202(2), 765–793 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Dong, K., Wang, C., Yu, A.: A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chem. Eng. Sci. 126, 500–516 (2015)

    Google Scholar 

  46. Dorai, F., Teixeira, C.M., Rolland, M., Climent, E., Marcoux, M., Wachs, A.: Fully resolved simulations of the flow through a packed bed of cylinders: effect of size distribution. Chem. Eng. Sci. 129, 180–192 (2015)

    Google Scholar 

  47. Dubois, F., Acary, V., Jean, M.: The contact dynamics method: a nonsmooth story. C. R. Méc. 346(3), 247–262 (2018)

    Google Scholar 

  48. Dviugys, A., Peters, B.: An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers. Granul. Matter 3(4), 231–266 (2001)

    Google Scholar 

  49. Eitel-Amor, G., Meinke, M., Schröder, W.: A lattice-Boltzmann method with hierarchically refined meshes. Comput. Fluids 75, 127–139 (2013)

    MATH  Google Scholar 

  50. Elskamp, F., Kruggel-Emden, H., Hennig, M., Teipel, U.: A strategy to determine DEM parameters for spherical and non-spherical particles. Granul. Matter 19(3), 46 (2017)

    Google Scholar 

  51. Esteghamatian, A., Hammouti, A., Lance, M., Wachs, A.: Particle resolved simulations of liquid/solid and gas/solid fluidized beds. Phys. Fluids 29(3), 033302 (2017)

    Google Scholar 

  52. Estrada, N., Taboada, A., Radjai, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78(2), 021301 (2008)

    Google Scholar 

  53. Evans, D.: On the representation of orientation space. Mol. Phys. 34(2), 317–325 (1977)

    MathSciNet  Google Scholar 

  54. Evans, D., Murad, S.: Singularity free algorithm for molecular dynamics simulation of rigid polyatomics. Mol. Phys. 34(2), 327–331 (1977)

    Google Scholar 

  55. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35–60 (2000)

    MathSciNet  MATH  Google Scholar 

  56. Fakhari, A., Lee, T.: Finite-difference lattice Boltzmann method with a block-structured adaptive-mesh-refinement technique. Phys. Rev. E 89(3), 033310 (2014)

    Google Scholar 

  57. Feng, J., Hu, H., Joseph, D.: Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation. J. Fluid Mech. 261, 95–134 (1994)

    MATH  Google Scholar 

  58. Feng, J., Hu, H., Joseph, D.: Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J. Fluid Mech. 277(271), 271–301 (1994)

    MATH  Google Scholar 

  59. Feng, Z., Michaelides, E.: Heat transfer in particulate flows with direct numerical simulation (DNS). Int. J. Heat Mass Transf. 52(3–4), 777–786 (2009)

    MATH  Google Scholar 

  60. Feng, Z., Michaelides, E.: Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows. Comput. Fluids 38(2), 370–381 (2009)

    MATH  Google Scholar 

  61. Ferris, M., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669–713 (1997)

    MathSciNet  MATH  Google Scholar 

  62. Fogelson, A., Peskin, C.: A fast numerical method for solving the three-dimensional Stokes’ equations in the presence of suspended particles. J. Comput. Phys. 79(1), 50–69 (1988)

    MathSciNet  MATH  Google Scholar 

  63. Form, W., Ito, N., Kohring, G.A.: Vectorized and parallelized algorithms for multi-million particle md-simulation. Int. J. Mod. Phys. C 4(06), 1085–1101 (1993)

    Google Scholar 

  64. Fraige, F., Langston, P., Chen, G.: Distinct element modelling of cubic particle packing and flow. Powder Technol. 186(3), 224–240 (2008)

    Google Scholar 

  65. Fukumoto, Y., Sakaguchi, H., Murakami, A.: The role of rolling friction in granular packing. Granul. Matter 15(2), 175–182 (2013)

    Google Scholar 

  66. Gallier, S., Lemaire, E., Lobry, L., Peters, F.: A fictitious domain approach for the simulation of dense suspensions. J. Comput. Phys. 256, 367–387 (2014)

    MathSciNet  MATH  Google Scholar 

  67. Geng, F., Yuan, Z., Yan, Y., Luo, D., Wang, H., Li, B., Xu, D.: Numerical simulation on mixing kinetics of slender particles in a rotary dryer. Powder Technol. 193(1), 50–58 (2009)

    Google Scholar 

  68. Ghias, R., Mittal, R., Lund, T.: A non-body conformal grid method for simulation of compressible flows with complex immersed boundaries. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, pp. 80 (2004)

  69. Gibou, F., Fedkiw, R., Cheng, L.-T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205–227 (2002)

    MathSciNet  MATH  Google Scholar 

  70. Gilbert, E., Johnson, D., Keerthi, S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J. Robot. Autom. 4(2), 193–203 (1988)

    Google Scholar 

  71. Glowinski, R., Pan, T., Hesla, T., Joseph, D.: A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 25(5), 755–794 (1999)

    MathSciNet  MATH  Google Scholar 

  72. Glowinski, R., Pan, T., Hesla, T., Joseph, D., Periaux, J.: A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application to particulate flow. Int. J. Numer. Methods Fluids 30(8), 1043–1066 (1999)

    MATH  Google Scholar 

  73. Glowinski, R., Pan, T., Hesla, T., Joseph, D., Periaux, J.: A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow. Comput. Methods Appl. Mech. Eng. 184(2–4), 241–267 (2000)

    MathSciNet  MATH  Google Scholar 

  74. Glowinski, R., Pan, T., Hesla, T., Joseph, D., Periaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)

    MathSciNet  MATH  Google Scholar 

  75. Glowinski, R., Wachs, A.: On the numerical simulation of viscoplastic fluid flow. In: Glowinski, R., Xu, J. (eds.) Handbook of Numerical Analysis Volume XVI: Numerical Methods for Non-Newtonian Fluids, pp. 483–718. Elsevier, Amsterdam (2011)

  76. Goldstein, D., Handler, R., Sirovich, L.: Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105(2), 354–366 (1993)

    MATH  Google Scholar 

  77. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: a hierarchical structure for rapid interference detection. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 171–180 (1996)

  78. Govender, N., Wilke, D., Shalk, K.: Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete element method. Appl. Math. Comput. 267, 810–829 (2015)

    MathSciNet  MATH  Google Scholar 

  79. Griffith, B.E., Hornung, R.D., McQueen, D.M., Peskin, C.S.: An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223(1), 10–49 (2007)

    MathSciNet  MATH  Google Scholar 

  80. Guendelman, E., Bridson, R., Fedkiw, R.: Nonconvex rigid bodies with stacking. In: ACM Transactions on Graphics (TOG), vol. 22, pp. 871–878. ACM (2003)

  81. Guo, Y., Wassgren, C., Ketterhagen, W., Hancock, B., James, B., Curtis, J.: A numerical study of granular shear flows of rod-like particles using the discrete element method. J. Fluid Mech. 713, 1–26 (2012)

    MathSciNet  MATH  Google Scholar 

  82. Haeri, S., Shrimpton, J.: On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. Int. J. Multiph. Flow 40, 38–55 (2012)

    Google Scholar 

  83. Haeri, S., Shrimpton, J.: A new implicit fictitious domain method for the simulation of flow in complex geometries with heat transfer. J. Comput. Phys. 237, 21–45 (2013)

    MathSciNet  MATH  Google Scholar 

  84. Hamilton, S.: On quaternions. Proc. R. Ir. Acad. 3, 1–16 (1847)

    Google Scholar 

  85. Hamilton, S.: Lectures on quaternions. Hodges and Smith (1853)

  86. Hamilton, S.: Elements of Quaternions. Green, & co., Longmans (1866)

    Google Scholar 

  87. Hart, R., Cundall, P., Lemos, J.: Formulation of a three-dimensional distinct element model—part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 117–125 (1988)

    Google Scholar 

  88. Hartmann, D., Meinke, M., Schröder, W.: A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids. Comput. Methods Appl. Mech. Eng. 200(9–12), 1038–1052 (2011)

    MathSciNet  MATH  Google Scholar 

  89. Henshaw, W.D.: Ogen: an overlapping grid generator for overture. Technical report, Department of Mathematical Sciences. Rensselaer Polytechnic Institute (2015)

  90. Henshaw, W.D., Schwendeman, D.W.: Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement. J. Comput. Phys. 227(16), 7469–7502 (2008)

    MathSciNet  MATH  Google Scholar 

  91. Hill, R., Koch, D., Ladd, A.: Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 448(2), 243–278 (2001)

    MathSciNet  MATH  Google Scholar 

  92. Hill, R., Koch, D., Ladd, A.: The first effects of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech. 448(2), 213–241 (2001)

    MathSciNet  MATH  Google Scholar 

  93. Höfler, K., Schwarzer, S.: Navier–Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries. Phys. Rev. E 61, 7146–7160 (2000)

    Google Scholar 

  94. Hogue, C.: Shape representation and contact detection for discrete element simulations of arbitrary geometries. Eng. Comput. 15(3), 374–390 (1998)

    MATH  Google Scholar 

  95. Hogue, C., Newland, D.: Efficient computer simulation of moving granular particles. Powder Technol. 78(1), 51–66 (1994)

    Google Scholar 

  96. Hölzer, A., Sommerfeld, M.: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38(3), 572–589 (2009)

    Google Scholar 

  97. Hu, H.: Direct simulation of flows of solid–liquid mixtures. Int. J. Multiph. Flow 22(2), 335–352 (1996)

    MathSciNet  MATH  Google Scholar 

  98. Hu, H., Patankar, N., Zhu, M.: Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169(2), 427–462 (2001)

    MathSciNet  MATH  Google Scholar 

  99. Hu, H.H., Joseph, D.D., Crochet, M.J.: Direct simulation of fluid particle motions. Theor. Comput. Fluid Dyn. 3(5), 285–306 (1992)

    MATH  Google Scholar 

  100. Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 63(1), 97–112 (1987)

    MathSciNet  MATH  Google Scholar 

  101. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)

    MathSciNet  MATH  Google Scholar 

  102. Iglberger, K., Rüde, U.: Large-scale rigid body simulations. Multibody Syst. Dyn. 25(1), 81–95 (2011)

    MathSciNet  MATH  Google Scholar 

  103. Iwashita, K., Oda, M.: Mechanics of Granular Materials: An Introduction. CRC Press, Boca Raton (1999)

    Google Scholar 

  104. Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177(3–4), 235–257 (1999)

    MathSciNet  MATH  Google Scholar 

  105. Jiménez, J.J., Segura, R.J.: Collision detection between complex polyhedra. Comput. Graph. 32(4), 402–411 (2008)

    Google Scholar 

  106. Johansen, H., Colella, P.: A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys. 147(1), 60–85 (1998)

    MathSciNet  MATH  Google Scholar 

  107. Johnson, A.A., Tezduyar, T.E.: Simulation of multiple spheres falling in a liquid-filled tube. Comput. Methods Appl. Mech. Eng. 134(3–4), 351–373 (1996)

    MathSciNet  MATH  Google Scholar 

  108. Johnson, A.A., Tezduyar, T.E.: Advanced mesh generation and update methods for 3D flow simulations. Comput. Mech. 23(2), 130–143 (1999)

    MATH  Google Scholar 

  109. Johnson, M.: A novel Cartesian CFD cut cell approach. Comput. Fluids 79, 105–119 (2013)

    MathSciNet  MATH  Google Scholar 

  110. Johnson, S., Williams, J., Cook, B.: Quaternion-based rigid body rotation integration algorithms for use in particle methods. Int. J. Numer. Methods Eng. 74(8), 1303–1313 (2008)

    MathSciNet  MATH  Google Scholar 

  111. Johnson, S., Williams, J., Cook, B.: On the application of quaternion-based approaches in discrete element methods. Eng. Comput. 26, 610–620 (2009)

    Google Scholar 

  112. Kang, S., Iaccarino, G., Ham, F.: DNS of buoyancy-dominated turbulent flows on a bluff body using the immersed boundary method. J. Comput. Phys. 228(9), 3189–3208 (2009)

    MATH  Google Scholar 

  113. Kang, S., Iaccarino, G., Moin, P.: Accurate immersed-boundary reconstructions for viscous flow simulations. AIAA J. 47(7), 1750–1760 (2009)

    Google Scholar 

  114. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.: All you need is shape: predicting shear banding in sand with LS-DEM. J. Mech. Phys. Solids 111, 375–392 (2018)

    Google Scholar 

  115. Kempe, T., Fröhlich, J.: An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231(9), 3663–3684 (2012)

    MathSciNet  MATH  Google Scholar 

  116. Kidanemariam, A., Uhlmann, M.: Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow. Int. J. Multiph. Flow 67, 174–188 (2014)

    Google Scholar 

  117. Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171(1), 132–150 (2001)

    MathSciNet  MATH  Google Scholar 

  118. Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans. Vis. Comput. Graph. 1, 21–36 (1998)

    Google Scholar 

  119. Koblitz, A., Lovett, S., Nikiforakis, N., Henshaw, W.: Direct numerical simulation of particulate flows with an overset grid method. J. Comput. Phys. 343, 414–431 (2017)

    MathSciNet  MATH  Google Scholar 

  120. Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., Wassgren, C.: Cylindrical object contact detection for use in discrete element method simulations. Part I–contact detection algorithms. Chem. Eng. Sci. 65(22), 5852–5862 (2010)

    Google Scholar 

  121. Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., Wassgren, C.: Cylindrical object contact detection for use in discrete element method simulations. Part II–experimental validation. Chem. Eng. Sci. 65(22), 5863–5871 (2010)

    Google Scholar 

  122. Kohring, G.: Computer simulations of sintering via granular dynamics. Phys. A Stat. Mech. Appl. 195(1–2), 1–11 (1993)

    Google Scholar 

  123. Kremmer, M., Favier, J.F.: Calculating rotational motion in discrete element modelling of arbitrary shaped model objects. Eng. Comput. 17(6), 703–714 (2000)

    MATH  Google Scholar 

  124. Kriebitzsch, M., Van der Hoef, S.H.L., Kuipers, J.: Fully resolved simulation of a gas-fluidized bed: a critical test of DEM models. Chem. Eng. Sci. 91, 1–4 (2013)

    Google Scholar 

  125. Kruggel-Emden, H., Rickelt, S., Wirtz, S., Scherer, V.: A study on the validity of the multi-sphere discrete element method. Powder Technol. 188(2), 153–165 (2008)

    Google Scholar 

  126. Kruggel-Emden, H., Sturm, M., Wirtz, S., Scherer, V.: Selection of an appropriate time integration scheme for the discrete element method (DEM). Comput. Chem. Eng. 32(10), 2263–2279 (2008)

    Google Scholar 

  127. Kruggel-Emden, H., Wirtz, S., Scherer, V.: A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chem. Eng. Sci. 63(6), 1523–1541 (2008)

    Google Scholar 

  128. Kuipers, J.: Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton Univ Pr, Princeton (2002)

    MATH  Google Scholar 

  129. Ladd, A.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271(1), 311–339 (1994)

    MathSciNet  MATH  Google Scholar 

  130. Ladd, A.: Sedimentation of homogeneous suspensions of non-Brownian spheres. Phys. Fluids 9, 491–499 (1997)

    Google Scholar 

  131. Ladd, A., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104(5), 1191–1251 (2001)

    MathSciNet  MATH  Google Scholar 

  132. Lai, M.-C., Peskin, C.S.: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys. 160(2), 705–719 (2000)

    MathSciNet  MATH  Google Scholar 

  133. Langston, P., Al-Awamleh, M., Fraige, F., Asmar, B.: Distinct element modelling of non-spherical frictionless particle flow. Chem. Eng. Sci. 59(2), 425–435 (2004)

    Google Scholar 

  134. Langston, P., Tuzun, U., Heyes, D.: Continuous potential discrete particle simulations of stress and velocity fields in hoppers: transition from fluid to granular flow. Chem. Eng. Sci. 49(8), 1259–1275 (1994)

    Google Scholar 

  135. Larsson, T., Akenine-Möller, T.: A dynamic bounding volume hierarchy for generalized collision detection. Comput. Graph. 30(3), 450–459 (2006)

    Google Scholar 

  136. Lee, C.: Stability characteristics of the virtual boundary method in three-dimensional applications. J. Comput. Phys. 184(2), 559–591 (2003)

    MATH  Google Scholar 

  137. Lee, L., LeVeque, R.J.: An immersed interface method for incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 25(3), 832–856 (2003)

    MathSciNet  MATH  Google Scholar 

  138. Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)

    MathSciNet  MATH  Google Scholar 

  139. Li, J., Langston, P., Webb, C., Dyakowski, T.: Flow of sphero-disc particles in rectangular hoppers-a DEM and experimental comparison in 3D. Chem. Eng. Sci. 59(24), 5917–5929 (2004)

    Google Scholar 

  140. Lin, X., Ng, T.: A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique 47(2), 319–329 (1997)

    Google Scholar 

  141. Lin, X., Ng, T.-T.: Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling. Int. J. Numer. Anal. Methods Geomech. 19(9), 653–659 (1995)

    MATH  Google Scholar 

  142. Lindemann, P.: The Gilbert–Johnson–Keerthi distance algorithm. Technical report, University of Munich, Germany (2009)

  143. Lomholt, S., Stenum, B., Maxey, M.: Experimental verification of the force coupling method for particulate flows. Int. J. Multiph. Flow 28(2), 225–246 (2002)

    MATH  Google Scholar 

  144. Lötstedt, P.: Coulomb friction in two-dimensional rigid body systems. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 61(12), 605–615 (1981)

    MathSciNet  Google Scholar 

  145. Lötstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42(2), 281–296 (1982)

    MathSciNet  Google Scholar 

  146. Lötstedt, P.: Numerical simulation of time-dependent contact and friction problems in rigid body mechanics. SIAM J. Sci. Stat. Comput. 5(2), 370–393 (1984)

    MathSciNet  MATH  Google Scholar 

  147. Lu, G., Third, J., Müller, C.: Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chem. Eng. Sci. 78, 226–235 (2012)

    Google Scholar 

  148. Lu, G., Third, J., Müller, C.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015)

    Google Scholar 

  149. Lu, G., Third, J., Müller, C.: The parameters governing the coefficient of dispersion of cubes in rotating cylinders. Granul. Matter 19(1), 12 (2017)

    Google Scholar 

  150. Lu, J., Das, S., Peters, E., Kuipers, J.: Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems with surface reactions. Chem. Eng. Sci. 176, 1–18 (2018)

    Google Scholar 

  151. Ludewig, F., Vandewalle, N.: Strong interlocking of nonconvex particles in random packings. Phys. Rev. E 85(5), 051307 (2012)

    Google Scholar 

  152. Luding, S., Clément, E., Blumen, A., Rajchenbach, J., Duran, J.: Anomalous energy dissipation in molecular-dynamics simulations of grains: the "detachment" effect. Phys. Rev. E 50(5), 4113 (1994)

    Google Scholar 

  153. Luo, H., Dai, H., Ferreira de Sousa, P.J.S.A., Yin, B.: On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput. Fluids 56, 61–76 (2012)

    MathSciNet  MATH  Google Scholar 

  154. Luo, K., Wang, Z., Fan, J., Cen, K.: Full-scale solutions to particle-laden flows: multidirect forcing and immersed boundary method. Phys. Rev. E 76(6), 066709 (2007)

    Google Scholar 

  155. Maitri, R.V., Das, S., Kuipers, J.A.M., Padding, J.T., Peters, E.A.J.F.: An improved ghost-cell sharp interface immersed boundary method with direct forcing for particle laden flows. Comput. Fluids 175, 111–128 (2018)

    MathSciNet  MATH  Google Scholar 

  156. Majumdar, S., Iaccarino, G., Durbin, P.: RANS solvers with adaptive structured boundary non-conforming grids. Technical report, CTR Annual Research Brief (2001)

  157. Mark, A., van Wachem, B.: Derivation and validation of a novel implicit second-order accurate immersed boundary method. J. Comput. Phys. 227(13), 6660–6680 (2008)

    MathSciNet  MATH  Google Scholar 

  158. Markauskas, D., Kačeniauskas, A.: The comparison of two domain repartitioning methods used for parallel discrete element computations of the hopper discharge. Adv. Eng. Softw. 84, 68–76 (2015)

    Google Scholar 

  159. Markauskas, D., Kačeniauskas, A., Maknickas, A.: Dynamic domain decomposition applied to hopper discharge simulation by discrete element method. Inf. Technol. Control 40(4), 286–292 (2011)

    Google Scholar 

  160. Maxey, M.: Simulation methods for particulate flows and concentrated suspensions. Ann. Rev. Fluid Mech. 49, 171–193 (2017)

    MathSciNet  MATH  Google Scholar 

  161. Maxey, M., Patel, B.: Localized force representations for particles sedimenting in Stokes flow. Int. J. Multiph. Flow 27(9), 1603–1626 (2001)

    MATH  Google Scholar 

  162. Meinke, M., Schneiders, L., Günther, C., Schröder, W.: A cut-cell method for sharp moving boundaries in Cartesian grids. Comput. Fluids 85, 135–142 (2013)

    MathSciNet  MATH  Google Scholar 

  163. Meng, L., Li, S., Lu, P., Li, T., Jin, W.: Bending and elongation effects on the random packing of curved spherocylinders. Phys. Rev. E 86(6), 061309 (2012)

    Google Scholar 

  164. Mirtich, B.V.: Impulse-based dynamic simulation of rigid body systems. PhD thesis, University of California at Berkeley (1996)

  165. Mittal, R., Dong, H., Bozkurttas, M., Najjar, F.M., Vargas, A., von Loebbecke, A.: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227(10), 4825–4852 (2008)

    MathSciNet  MATH  Google Scholar 

  166. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    MathSciNet  MATH  Google Scholar 

  167. Moghaddam, E.M., Foumeny, E.A., Stankiewicz, A., Padding, J.: A rigid body dynamics algorithm for modeling random packing structures of non-spherical and non-convex pellets. Ind. Eng. Chem. Res. 57, 14988–15007 (2018)

    Google Scholar 

  168. Mohaghegh, F., Udaykumar, H.: Comparison of sharp and smoothed interface methods for simulation of particulate flows I: fluid structure interaction for moderate Reynolds numbers. Comput. Fluids 140, 39–58 (2016)

    MathSciNet  MATH  Google Scholar 

  169. Mohd-Yusof, J.: Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries. Technical report, CTR Annual Research Brief (1997)

  170. Moore, M., Wilhelms, J.: Collision detection and response for computer animation. In: ACM Siggraph Computer Graphics, vol 22, pp. 289–298. ACM (1988)

  171. Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26(3), 347–374 (1977)

    MathSciNet  MATH  Google Scholar 

  172. Moreau, J.J.: Application of convex analysis to some problems of dry friction. Trends Appl. Pure Math. Mech. 2, 263–280 (1979)

    MathSciNet  MATH  Google Scholar 

  173. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications, Volume 302, Courses and Lectures, International Centre for Mechanical Sciences. Springer, New York (1988)

  174. Moreau, J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A/Solids 13(4–suppl), 93–114 (1993)

    MathSciNet  MATH  Google Scholar 

  175. Mozafari-Shamsi, M., Sefid, M., Imani, G.: Application of the ghost fluid lattice Boltzmann method to moving curved boundaries with constant temperature or heat flux conditions. Comput. Fluids 167, 51–65 (2018)

    MathSciNet  MATH  Google Scholar 

  176. Mukundan, R.: Quaternions: from classical mechanics to computer graphics, and beyond. In: Proceedings of the 7th Asian Technology conference in Mathematics, pp. 97–105. Citeseer (2002)

  177. Nezami, E.G., Hashash, M.A.Y., Zhao, D., Ghaboussi, J.: Shortest link method for contact detection in discrete element method. Int. J. Numer. Anal. Methods Geomech. 30(8), 783–801 (2006)

    MATH  Google Scholar 

  178. Nezami, E.G., Hashash, Y.M.A., Zhao, D., Ghaboussi, J.: A fast contact detection algorithm for 3-D discrete element method. Comput. Geotech. 31(7), 575–587 (2004)

    Google Scholar 

  179. Ng, T.-T.: Numerical simulations of granular soil using elliptical particles. Comput. Geotech. 16(2), 153–169 (1994)

    Google Scholar 

  180. Nolan, G., Kavanagh, P.: Random packing of nonspherical particles. Powder Technol. 84(3), 199–205 (1995)

    Google Scholar 

  181. Nott, P., Brady, J.: Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275(1), 157–199 (1994)

    MATH  Google Scholar 

  182. NVIDIA. Accelerated computing, MPI Solutions for GPUs. https://developer.nvidia.com/mpi-solutions-gpus (2013). Accessed Nov 2018

  183. NVIDIA. Accelerated computing, NVIDIA GPUDirect. https://developer.nvidia.com/gpudirect (2013). Accessed Nov 2018

  184. Ong, C., Gilbert, E.: The Gilbert–Johnson–Keerthi distance algorithm: a fast version for incremental motions. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1183–1189. IEEE (1997)

  185. Ong, C., Gilbert, E.: Fast versions of the Gilbert–Johnson–Keerthi distance algorithm: additional results and comparisons. IEEE Trans. Robot. Autom. 17(4), 531–539 (2001)

    Google Scholar 

  186. Ouadfel, H., Rothenburg, L.: An algorithm for detecting inter-ellipsoid contacts. Comput. Geotech. 24(4), 245–263 (1999)

    Google Scholar 

  187. Ozel, A., de Motta, J., Abbas, M., Fede, P., Masbernat, O., Vincent, S., Estivalezes, J.-L., Simonin, O.: Particle resolved direct numerical simulation of a liquid-solid fluidized bed: comparison with experimental data. Int. J. Multiph. Flow 89, 228–240 (2017)

    MathSciNet  Google Scholar 

  188. Pan, T., Joseph, D., Bai, R., Glowinski, R., Sarin, V.: Fluidization of 1204 spheres: simulation and experiment. J. Fluid Mech. 451, 169–191 (2002)

    MathSciNet  MATH  Google Scholar 

  189. Pan, T., Joseph, D., Glowinski, R.: Modelling Rayleigh–Taylor instability of a sedimenting suspension of several thousand circular particles in a direct numerical simulation. J. Fluid Mech. 434, 23–37 (2001)

    MATH  Google Scholar 

  190. Patankar, N., Singh, P., Joseph, D., Glowinski, R., Pan, T.: A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 26(9), 1509–1524 (2000)

    MATH  Google Scholar 

  191. Pereira, G., Cleary, P.: Segregation due to particle shape of a granular mixture in a slowly rotating tumbler. Granul. Matter 19(2), 23 (2017)

    Google Scholar 

  192. Peskin, C.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)

    MathSciNet  MATH  Google Scholar 

  193. Peskin, C.: The immersed boundary method. Acta Numer. 11(1), 479–517 (2002)

    MathSciNet  MATH  Google Scholar 

  194. Peskin, C.S.: Flow patterns around heart valves: a digital computer method for solving the equations of motion. PhD thesis, Albert Einstein College of Medicine (1972)

  195. Pletinckx, D.: Quaternion calculus as a basic tool in computer graphics. Vis. Comput. 5(1), 2–13 (1989)

    MATH  Google Scholar 

  196. Podlozhnyuk, A., Pirker, S., Kloss, C.: Efficient implementation of superquadric particles in discrete element method within an open-source framework. Comput. Part. Mech. 4(1), 101–118 (2017)

    Google Scholar 

  197. Popinet, S.: Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190(2), 572–600 (2003)

    MathSciNet  MATH  Google Scholar 

  198. Popinet, S.: A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336–358 (2015)

    MathSciNet  MATH  Google Scholar 

  199. Portal, R., Sousa, L., Dias, J., Santos, N.: Contact detection of convex superquadrics using optimization techniques with graphical user interface. In: Proceedings of the 7th EUROMECH Solid Mechanics Conference, Lisboa, Portugal (2009)

  200. Prosperetti, A., Oguz, H.N.: Physalis: a new o (N) method for the numerical simulation of disperse systems: potential flow of spheres. J. Comput. Phys. 167(1), 196–216 (2001)

    MathSciNet  MATH  Google Scholar 

  201. Radjaï, F., Dubois, F.: Discrete-Element Modeling of Granular Materials. Wiley-ISTE, London (2011)

    Google Scholar 

  202. Radjai, F., Jean, M., Moreau, J.J., Roux, S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Letters 77(2), 274 (1996)

    Google Scholar 

  203. Radjai, F., Richefeu, V.: Contact dynamics as a nonsmooth discrete element method. Mech. Mater. 41(6), 715–728 (2009)

    Google Scholar 

  204. Radjai, F., Roux, J.-N., Daouadji, A.: Modeling granular materials: century-long research across scales. J. Eng. Mech. 143(4), 04017002 (2017)

    Google Scholar 

  205. Radjai, F., Roux, S., Moreau, J.J.: Contact forces in a granular packing. Chaos. Interdiscip. J. Nonlinear Sci. 9(3), 544–550 (1999)

    MATH  Google Scholar 

  206. Rahmani, M., Hammouti, A., Wachs, A.: Momentum balance and stresses in a suspension of spherical particles in a plane Couette flow. Phys. Fluids 30(4), 043301 (2018)

    Google Scholar 

  207. Rahmani, M., Wachs, A.: Free falling and rising of spherical and angular particles. Phys. Fluids 26, 083301 (2014)

    Google Scholar 

  208. Rakotonirina, A., Wachs, A.: Grains3D, a flexible DEM approach for particles of arbitrary convex shape—part II: parallel implementation and scalable performance. Powder Technol. 324, 18–35 (2018)

    Google Scholar 

  209. Rakotonirina, A.D., Delenne, J.-Y., Radjai, F., Wachs, A.: Grains3D, a flexible DEM approach for particles of arbitrary convex shape—part III: extension to non-convex particles modelled as glued convex particles. Comput. Part. Mech. 5(4), 1–30 (2018)

    Google Scholar 

  210. Renouf, M., Dubois, F., Alart, P.: A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J. Comput. Appl. Math. 168(1–2), 375–382 (2004)

    MathSciNet  MATH  Google Scholar 

  211. Richter, A., Nikrityuk, P.: Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers. Int. J. Heat Mass Transf 55(4), 1343–1354 (2012)

    MATH  Google Scholar 

  212. Ristow, G.H.: Molecular dynamics simulations of granular materials on the intel ipsc/860. Int. J. Mod. Phys. C 3(06), 1281–1293 (1992)

    Google Scholar 

  213. Ristow, G.H., Herrmann, H.J.: Forces on the walls and stagnation zones in a hopper filled with granular material. Phys. A Stat. Mech. Appl. 213(4), 474–481 (1995)

    Google Scholar 

  214. Ritz, J., Caltagirone, J.: A numerical continuous model for the hydrodynamics of fluid particle systems. Int. J. Numer. Methods Fluids 30(8), 1067–1090 (1999)

    MATH  Google Scholar 

  215. Rémond, S., Gallias, J., Mizrahi, A.: Simulation of the packing of granular mixtures of non-convex particles and voids characterization. Granul. Matter 10(3), 157–170 (2008)

    MATH  Google Scholar 

  216. Rohde, M., Kandhai, D., Derksen, J.J., Van den Akker, H.E.A.: A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes. Int. J. Numer. Methods Fluids 51(4), 439–468 (2006)

    MathSciNet  MATH  Google Scholar 

  217. Roma, A., Peskin, C., Berger, M.: An adaptive version of the immersed boundary method. J. Comput. Phys. 153(2), 509–534 (1999)

    MathSciNet  MATH  Google Scholar 

  218. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4), 601–614 (1989)

    Google Scholar 

  219. Rothenburg, L., Bathurst, R.J.: Numerical simulation of idealized granular assemblies with plane elliptical particles. Comput. Geotech. 11(4), 315–329 (1991)

    Google Scholar 

  220. Sadd, M., Tai, Q., Shukla, A.: Contact law effects on wave propagation in particulate materials using distinct element modeling. Int. J. Non-linear Mech. 28(2), 251–265 (1993)

    MATH  Google Scholar 

  221. Saff, E., Kuijlaars, A.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997)

    MathSciNet  MATH  Google Scholar 

  222. Saramito, P., Wachs, A.: Progress in numerical simulation of yield stress fluid flows. Rheol. Acta 56(3), 211–230 (2017)

    Google Scholar 

  223. Schneiders, L., Günther, C., Meinke, M., Schröder, W.: An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 62–86 (2016)

    MathSciNet  MATH  Google Scholar 

  224. Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)

    MathSciNet  Google Scholar 

  225. Seelen, L., Padding, J., Kuipers, J.: Improved quaternion-based integration scheme for rigid body motion. Acta Mech. 227(12), 3381–3389 (2016)

    MathSciNet  MATH  Google Scholar 

  226. Seelen, L., Padding, J., Kuipers, J.: A granular discrete element method for arbitrary convex particle shapes: method and packing generation. Chem. Eng. Sci. 189, 84–101 (2018)

    Google Scholar 

  227. Seo, J.H., Mittal, R.: A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. J. Comput. Phys. 230(4), 1000–1019 (2011)

    MathSciNet  MATH  Google Scholar 

  228. Shivarama, R., Fahrenthold, E.: Hamilton’s equations with Euler parameters for rigid body dynamics modeling. J. Dyn. Syst. Meas. Control 126, 124 (2004)

    Google Scholar 

  229. Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH Comput. Graph. 19(3), 245–254 (1985)

    Google Scholar 

  230. Sierakowski, A.J., Prosperetti, A.: Resolved-particle simulation by the Physalis method: enhancements and new capabilities. J. Comput. Phys. 309, 164–184 (2016)

    MathSciNet  MATH  Google Scholar 

  231. Sierou, A., Brady, J.F.: Accelerated Stokesian dynamics simulations. J. Fluid Mech. 448, 115–146 (2001)

    MATH  Google Scholar 

  232. Sierou, A., Brady, J.F.: Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46(5), 1031–1056 (2002)

    Google Scholar 

  233. Silva, A.L.F.L.E., Silveira-Neto, A., Damasceno, J.J.R.: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. J. Comput. Phys. 189(2), 351–370 (2003)

    MATH  Google Scholar 

  234. Sinnott, M., Cleary, P., Morrison, R.: Is media shape important for grinding performance in stirred mills? Miner. Eng. 24(2), 138–151 (2011)

    Google Scholar 

  235. Smeets, B., Odenthal, T., Vanmaercke, S., Ramon, H.: Polygon-based contact description for modeling arbitrary polyhedra in the discrete element method. Comput. Methods Appl. Mech. Eng. 290, 277–289 (2015)

    MathSciNet  MATH  Google Scholar 

  236. Soltanbeigi, B., Podlozhnyuk, A., Papanicolopulos, S.-A., Kloss, C., Pirker, S., Ooi, J.: DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technol. 329, 288–303 (2018)

    Google Scholar 

  237. Song, Y., Turton, R., Kayihan, F.: Contact detection algorithms for DEM simulations of tablet-shaped particles. Powder Technol. 161(1), 32–40 (2006)

    Google Scholar 

  238. Stewart, D.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3–39 (2000)

    MathSciNet  MATH  Google Scholar 

  239. Sun, B., Tenneti, S., Subramaniam, S.: Modeling average gas–solid heat transfer using particle-resolved direct numerical simulation. Int. J. Heat Mass Transf. 86, 898–913 (2015)

    Google Scholar 

  240. Taira, K., Colonius, T.: The immersed boundary method: a projection approach. J. Comput. Phys. 225(2), 2118–2137 (2007)

    MathSciNet  MATH  Google Scholar 

  241. Takashi, N., Hughes, T.J.R.: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body. Comput. Methods Appl. Mech. Eng. 95(1), 115–138 (1992)

    MATH  Google Scholar 

  242. Tang, Y., Kriebitzsch, S., Peters, E., van der Hoef, M., Kuipers, J.: A methodology for highly accurate results of direct numerical simulations: drag force in dense gas–solid flows at intermediate Reynolds number. Int. J. Multiph. Flow 62, 73–86 (2014)

    MathSciNet  Google Scholar 

  243. Tangri, H., Guo, Y., Curtis, J.: Packing of cylindrical particles: DEM simulations and experimental measurements. Powder Technol. 317, 72–82 (2017)

    Google Scholar 

  244. Tenneti, S., Garg, R., Subramaniam, S.: Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int. J. Multiph. Flow 37(9), 1072–1092 (2011)

    Google Scholar 

  245. Tezduyar, T., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces-the DSD/ST procedure: I. The concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94(3), 339–351 (1992)

    MATH  Google Scholar 

  246. Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94(3), 353–371 (1992)

    MathSciNet  MATH  Google Scholar 

  247. Thornton, C., Cummins, S.J., Cleary, P.W.: An investigation of the comparative behaviour of alternative contact force models during elastic collisions. Powder Technol. 210(3), 189–197 (2011)

    Google Scholar 

  248. Thornton, C., Cummins, S.J., Cleary, P.W.: An investigation of the comparative behaviour of alternative contact force models during inelastic collisions. Powder Technol. 233, 30–46 (2013)

    Google Scholar 

  249. Ting, J.M.: A robust algorithm for ellipse-based discrete element modelling of granular materials. Comput. Geotech. 13(3), 175–186 (1992)

    MathSciNet  Google Scholar 

  250. Tiwari, A., Vanka, S.P.: A ghost fluid Lattice Boltzmann method for complex geometries. Int. J. Numer. Methods Fluids 69(2), 481–498 (2012)

    MathSciNet  MATH  Google Scholar 

  251. Topin, V., Dubois, F., Monerie, Y., Perales, F., Wachs, A.: Micro-rheology of dense particulate flows: application to immersed avalanches. J. Nonnewton. Fluid Mech. 166(1), 63–72 (2011)

    MATH  Google Scholar 

  252. Tsuji, Y., Kawaguchi, T., Tanaka, T.: Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77(1), 79–87 (1993)

    Google Scholar 

  253. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992)

    Google Scholar 

  254. Tsuzuki, S., Aoki, T.: Large-scale granular simulations using dynamic load balance on a GPU supercomputer. In: Poster at the 26th IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis (2014)

  255. Udaykumar, H., Shyy, W., Rao, M.M.: Elafint: a mixed Eulerian–Lagrangian method for fluid flows with complex and moving boundaries. Int. J. Numer. Methods Fluids 22(8), 691–712 (1996)

    MathSciNet  MATH  Google Scholar 

  256. Udaykumar, H.S., Mittal, R., Rampunggoon, P.: Interface tracking finite volume method for complex solid–fluid interactions on fixed meshes. Commun. Numer. Methods Eng. 18(2), 89–97 (2002)

    MATH  Google Scholar 

  257. Udaykumar, H.S., Mittal, R., Rampunggoon, P., Khanna, A.: A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174(1), 345–380 (2001)

    MATH  Google Scholar 

  258. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209(2), 448–476 (2005)

    MathSciNet  MATH  Google Scholar 

  259. van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. Graph. Tools 2(4), 1–13 (1997)

    MATH  Google Scholar 

  260. Van den Bergen, G.: A fast and robust GJK implementation for collision detection of convex objects. J. Graph. Gpu Game Tools 4, 7–25 (1999)

    Google Scholar 

  261. Van Den Bergen, G.: Proximity queries and penetration depth computation on 3d game objects. In: Game Developers Conference, vol. 170. Citeseer (2001)

  262. Van Den Bergen, G.: Simulation and collision detection. In: Efficient Collision Detection of Complex Deformable Models Using AABB Trees, pp. 131. AK Peters, Ltd. (2005)

  263. Van der Hoef, M., Beetstra, R., Kuipers, J.: Lattice-Boltzmann simulations of low-Reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force. J. Fluid Mech. 528, 233–254 (2005)

    MathSciNet  MATH  Google Scholar 

  264. Van der Hoef, M., van Sint Annaland, M., Deen, N., Kuipers, J.: Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Ann. Rev. Fluid Mech. 40, 47–70 (2008)

    MathSciNet  MATH  Google Scholar 

  265. Veeramani, C., Minev, P., Nandakumar, K.: A fictitious domain formulation for flows with rigid particles: a non-Lagrange multiplier version. J. Comput. Phys. 224(2), 867–879 (2007)

    MathSciNet  MATH  Google Scholar 

  266. Vincent, S., Brändle de Motta, J., Sarthou, A., Estivalezes, J.-L., Simonin, O., Climent, E.: A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows. J. Comput. Phys. 256, 582–614 (2014)

    MathSciNet  MATH  Google Scholar 

  267. Wachs, A.: A DEM-DLM/FD method for direct numerical simulation of particulate flows: sedimentation of polygonal isometric particles in a Newtonian fluid with collisions. Comput. Fluids 38(8), 1608–1628 (2009)

    MATH  Google Scholar 

  268. Wachs, A.: PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate flows. J. Eng. Math. 71(1), 131–155 (2011)

    MathSciNet  MATH  Google Scholar 

  269. Wachs, A., Girolami, L., Vinay, G., Ferrer, G.: Grains3D, a flexible DEM approach for particles of arbitrary convex shape—part I: numerical model and validations. Powder Technol. 224, 374–389 (2012)

    Google Scholar 

  270. Wachs, A., Hammouti, A., Vinay, G., Rahmani, M.: Accuracy of finite volume/staggered grid distributed Lagrange multiplier/fictitious domain simulations of particulate flows. Comput. Fluids 115, 154–172 (2015)

    MathSciNet  MATH  Google Scholar 

  271. Walther, J., Sbalzarini, I.: Large-scale parallel discrete element simulations of granular flow. Eng. Comput. 26, 688–697 (2009)

    Google Scholar 

  272. Walton, O., Braun, R.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30(5), 949–980 (1986)

    Google Scholar 

  273. Walton, O.R., Braun, R.L.: Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters. In: Joint DOE/NSF Workshop on Flow of Particulates and Fluids, Ithaca (1993)

  274. Wang, Z., Fan, J., Luo, K.: Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. Int. J. Multiph. Flow 34(3), 283–302 (2008)

    Google Scholar 

  275. Weinhart, T., Labra, C., Luding, S., Ooi, J.Y.: Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow. Powder Technol. 293, 138–148 (2016)

    Google Scholar 

  276. Williams, J., O’Connor, R.: A linear complexity intersection algorithm for discrete element simulation of arbitrary geometries. Eng. Comput. 12(2), 185–202 (1995)

    Google Scholar 

  277. Williams, J., Perkins, E., Cook, B.: A contact algorithm for partitioning N arbitrary sized objects. Eng. Comput. 21(2), 235–248 (2004)

    MATH  Google Scholar 

  278. Wilson, R., Dini, D., Van Wachem, B.: The influence of surface roughness and adhesion on particle rolling. Powder Technol. 312, 321–333 (2017)

    Google Scholar 

  279. Wu, C., Cocks, A.: Numerical and experimental investigations of the flow of powder into a confined space. Mech. Mater. 38(4), 304–324 (2006)

    Google Scholar 

  280. Wu, Y., An, X., Yu, A.: DEM simulation of cubical particle packing under mechanical vibration. Powder Technol. 314, 89–101 (2017)

    Google Scholar 

  281. Xia, J., Luo, K., Fan, J.: A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation. Int. J. Heat Mass Transf. 75, 302–312 (2014)

    Google Scholar 

  282. Xia, J., Luo, K., Fan, J.: Simulating heat transfer from moving rigid bodies using high-order ghost-cell based immersed-boundary method. Int. J. Heat Mass Transf. 89, 856–865 (2015)

    Google Scholar 

  283. Yang, R., Zou, R., Yu, A.: Microdynamic analysis of particle flow in a horizontal rotating drum. Powder Technol. 130(1–3), 138–146 (2003)

    Google Scholar 

  284. Ye, T., Mittal, R., Udaykumar, H.S., Shyy, W.: An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156(2), 209–240 (1999)

    MathSciNet  MATH  Google Scholar 

  285. Yiantsios, S.: On the distributed Lagrange multiplier/fictitious domain method for rigid-particle-laden flows: a proposition for an alternative formulation of the Lagrange multipliers. Int. J. Numer. Methods Fluids 70, 1027–1047 (2012)

    MathSciNet  Google Scholar 

  286. You, Y., Zhao, Y.: Discrete element modelling of ellipsoidal particles using super-ellipsoids and multi-spheres: a comparative study. Powder Technol. 331, 179–191 (2018)

    Google Scholar 

  287. Yu, Z., Fan, L.-S.: An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation. J. Comput. Phys. 228(17), 6456–6478 (2009)

    MathSciNet  MATH  Google Scholar 

  288. Yu, Z., Lin, Z., Shao, X., Wang, L.-P.: A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow. Eng. Appl. Comput. Fluid Mech. 10(1), 160–170 (2016)

    Google Scholar 

  289. Yu, Z., Phan-Thien, N., Fan, Y., Tanner, R.: Viscoelastic mobility problem of a system of particles. J. Nonnewton. Fluid Mech. 104(2–3), 87–124 (2002)

    MATH  Google Scholar 

  290. Yu, Z., Phan-Thien, N., Tanner, R.: Dynamic simulation of sphere motion in a vertical tube. J. Fluid Mech. 518, 61–93 (2004)

    MATH  Google Scholar 

  291. Yu, Z., Shao, X.: A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227(1), 292–314 (2007)

    MATH  Google Scholar 

  292. Yu, Z., Shao, X., Wachs, A.: A fictitious domain method for particulate flows with heat transfer. J. Comput. Phys. 217(2), 424–452 (2006)

    MathSciNet  MATH  Google Scholar 

  293. Yu, Z., Wachs, A.: A fictitious domain method for dynamic simulation of particle sedimentation in Bingham fluids. J. Nonnewton. Fluid Mech. 145(2), 78–91 (2007)

    MATH  Google Scholar 

  294. Yu, Z., Wachs, A., Peysson, Y.: Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method. J. Nonnewton. Fluid Mech. 136(2), 126–139 (2006)

    MATH  Google Scholar 

  295. Zhang, Z., Prosperetti, A.: A method for particle simulation. J. Appl. Mech. 70(1), 64–74 (2003)

    MATH  Google Scholar 

  296. Zhang, Z., Prosperetti, A.: A second-order method for three-dimensional particle simulation. J. Comput. Phys. 210(1), 292–324 (2005)

    MathSciNet  MATH  Google Scholar 

  297. Zhao, B., An, X., Wang, Y., Qian, Q., Yang, X., Sun, X.: DEM dynamic simulation of tetrahedral particle packing under 3D mechanical vibration. Powder Technol. 317, 171–180 (2017)

    Google Scholar 

  298. Zhao, F., van Wachem, B.: A novel quaternion integration approach for describing the behaviour of non-spherical particles. Acta Mech. 224(12), 3091–3109 (2013)

    MathSciNet  MATH  Google Scholar 

  299. Zhou, Y., Wright, B., Yang, R., Xu, B., Yu, A.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A Stat. Mech. Appl. 269(2–4), 536–553 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Wachs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wachs, A. Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive, and non-spherical rigid bodies. Acta Mech 230, 1919–1980 (2019). https://doi.org/10.1007/s00707-019-02389-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02389-9

Navigation