Skip to main content
Log in

Analytical solution and finite element approach to the dense re-entrant unit cells of auxetic structures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Chiral, star honeycomb, and re-entrant structures are among the most important structures of auxetic materials. In this study, a dense re-entrant unit cell is introduced for making a 3D auxetic structure to be used in high stiffness applications. A re-entrant structure is chosen due to its fundamental characteristics underlying the main characteristics of auxetic structures. The energy methods of solid mechanics along with numerical methods are used to study the fundamental concept of auxetic structures. Understanding the characteristics of the re-entrant structure will lead to the better comprehension of other structures of auxetic materials, which will eventually contribute to the advance of research in this new class of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arago, F.: Oeuvres complètes. Number v. 2 in Oeuvres complètes (1854)

  2. Greaves, G.: Poisson’s ratio and modern materials. Nat. Mater. 10, 723–806 (2011)

    Article  Google Scholar 

  3. Callister, W.: Materials Science and Engineering: An Introduction, 7th edn. Wiley, New York (2006)

    Google Scholar 

  4. Lakes, R.: Deformation mechanics in negative Poisson’s ratio materials. J. Mater. Sci. 26, 2287–2292 (1991)

    Article  Google Scholar 

  5. Lakes, R.: Advances in negative Poisson’s ratio materials. Adv. Mater. 5, 293–296 (1993)

    Article  Google Scholar 

  6. Lakes, R.: Extreme damping in composite material with negative stiffness inclusions. Nature 410, 565–567 (2001). https://doi.org/10.1038/35069035

    Article  Google Scholar 

  7. Prawoto, Y.: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140–153 (2012)

    Article  Google Scholar 

  8. Reis, F., Ganghoffer, J.: Equivalent mechanical properties of auxetic lattices from discrete homogenization. Comput. Mater. Sci. 51, 314–321 (2012)

    Article  Google Scholar 

  9. Blumenfold, R.: Auxetic strains-insight from iso-auxetic materials. Mol. Simul. 31, 867–871 (2005)

    Article  Google Scholar 

  10. Grima, J., Gatt, R., Ravirala, N., Alderson, A., Evans, K.: Negative Poisson’s ratios in cellular foam materials. Mater. Sci. Eng. 423, 214–218 (2006)

    Article  Google Scholar 

  11. Gibson, L., Ashby, M., Schajer, G., Robertson, C.: The mechanics of two dimensional cellular materials. J. Proc. Lond. R. Soc. 382, 25–42 (1982)

    Article  Google Scholar 

  12. Masters, I., Evans, K.: Models for the elastic deformation of honeycombs. Compos. Struct. 35, 403–408 (1996)

    Article  Google Scholar 

  13. Evans, K., Alderson, A., Christian, F.: Auxetic two-dimensional polymer networks. An example of tailoring geometry for specific mechanical properties. J. Chem. Soc. Faraday Trans. 91, 2671–2680 (1995)

    Article  Google Scholar 

  14. Lu, Z.-X., Liu, Q., Yang, Z.-Y.: Predictions of Young’s modulus and negative Poisson’s ratio of auxetic foams. J. Basic Solid State Phys. 248, 167–174 (2011)

    Article  Google Scholar 

  15. Chan, N., Evans, E.: Microscopic examination of the microstructure and deformation of conventional and auxetic foams. J. Mater. Sci. 32, 5725–5736 (1997)

    Article  Google Scholar 

  16. Subramani, P., Sohel Rana, D.V., Oliveira, R.F., Xavier, J.: Development of novel auxetic structures based on braided composites. Mater. Des. 61, 286–295 (2014)

    Article  Google Scholar 

  17. Wang, X.T., Wang, B., Li, X.W., Ma, L.: Mechanical properties of 3D re-entrant auxetic cellular structures. Int. J. Mech. Sci. 131–132, 396–407 (2017)

    Article  Google Scholar 

  18. Wang, Z.P., Poh, L.H., Dirrenberger, J., Zhu, Y., Forest, S.: Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization. Comput. Methods Appl. Mech. Eng. 323, 250–271 (2017)

    Article  MathSciNet  Google Scholar 

  19. Wang, Z.P., Poh, L.H.: Optimal form and size characterization of planar isotropic petal-shaped auxetics with tunable effective properties using IGA. Compos. Struct. 201, 486–502 (2018)

    Article  Google Scholar 

  20. Qi, C., Remennikov, A., Pei, L.Z., Yang, S., Yu, Z.H., Ngo, T.D.: Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations. Compos. Struct. 180, 161–178 (2017)

    Article  Google Scholar 

  21. Harkati, E., Daoudi, N., Bezazi, A., Haddad, A., Scarpa, F.: In-plane elasticity of a multi re-entrant auxetic honeycomb. Compos. Struct. 180, 130–139 (2017)

    Article  Google Scholar 

  22. El Nady, K., Reis, F.D., Ganghoffer, J.F.: Computation of the homogenized nonlinear elastic response of 2D and 3D auxetic structures based on micropolar continuum models. Compos. Struct. 170, 271–290 (2017)

    Article  Google Scholar 

  23. Fu, M.H., Chen, Y., Hu, L.L.: Bilinear elastic characteristic of enhanced auxetic honeycombs. Compos. Struct. 175, 101–110 (2017)

    Article  Google Scholar 

  24. Zheng, Q.S., Chen, T.: New perspective on Poisson’s ratios of elastic solids. Acta Mech. 150, 191–195 (2001)

    Article  MATH  Google Scholar 

  25. Zhang, S., Guan, M., Wu, G., Gao, S., Chen, X.: An ellipsoidal yield criterion for porous metals with accurate descriptions of theoretical strength and Poisson’s ratio. Acta Mech. 228, 4199–4210 (2017)

    Article  Google Scholar 

  26. Karathanasopoulos, N., Reda, H., Ganghoffer, J.: Designing two-dimensional metamaterials of controlled static and dynamic properties. Comput. Mater. Sci. 138, 323–332 (2017)

    Article  Google Scholar 

  27. Ganghoffer, J.F., Goda, I., Novotny, A.A., Rahouadj, R., Sokolowski, J.: Homogenized couple stress model of optimal auxetic microstructures computed by topology optimization. J. Appl. Math. Mech. 98, 696–717 (2017)

    MathSciNet  Google Scholar 

  28. Karathanasopoulos, N., Dos Reis, F., Reda, H., Ganghoffer, J.-F.: Computing the effective bulk and normal to shear properties of common two-dimensional architectured materials. Comput. Mater. Sci. 154, 284–294 (2018)

    Article  Google Scholar 

  29. Reda, H., Karathanasopoulos, N., Elnady, K., Ganghoffer, J.F., Lakiss, H.: The role of anisotropy on the static and wave propagation characteristics of two-dimensional architectured materials under finite strains. Mater. Des. 147, 134–145 (2018)

    Article  Google Scholar 

  30. Gilat, R., Aboudi, J.: Behavior of elastoplastic auxetic microstructural arrays. Materials 6, 726–737 (2013)

    Article  Google Scholar 

  31. Hu, L.L., Zhou, M.Z., Deng, H.: Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation. Compos. Struct. 207, 323–330 (2019)

    Article  Google Scholar 

  32. Dirrenberger, J., Forest, S., Jeulin, D.: Elastoplasticity of auxetic materials. Comput. Mater. Sci. 64, 57–61 (2012)

    Article  Google Scholar 

  33. Zhu, Y., Wang, Z.-P., Poh, L.H.: Auxetic hexachiral structures with wavy ligaments for large elasto-plastic deformation. Smart Mater. Struct. 27, 055001 (2018)

    Article  Google Scholar 

  34. Shokri Rad, M., Prawoto, Y., Ahmad, Z.: Analytical solution and finite element approach to the 3D re-entrant structures of auxetic materials. Mech. Mater. 74, 76–87 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hatami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, M.S., Hatami, H., Ahmad, Z. et al. Analytical solution and finite element approach to the dense re-entrant unit cells of auxetic structures. Acta Mech 230, 2171–2185 (2019). https://doi.org/10.1007/s00707-019-02387-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02387-x

Navigation