Advertisement

Acta Mechanica

, Volume 230, Issue 5, pp 1745–1780 | Cite as

A multiphase internal state variable model with rate equations for predicting elastothermoviscoplasticity and damage of fiber-reinforced polymer composites

  • Ge HeEmail author
  • Yucheng Liu
  • D. J. Bammann
  • D. K. Francis
  • M. Q. Chandler
  • M. F. Horstemeyer
Original Paper

Abstract

This paper explores the integration of an internal state variable (ISV) model for polymers (Bouvard et al. in Acta Mech 213(1):77–96, 2010; Int J Plast 42:168–193, 2013) with damage evolution (Horstemeyer and Gokhale in Int J Solids Struct 36:5029–5055, 1999; Horstemeyer et al. in Theor Appl Fract Mech 33(1):31–47, 2000; Francis et al. in Int J Solids Struct 51:2765–2776, 2014) into a multiphase ISV framework (Rajagopal and Tao in Advances in mathematics for the applied sciences, World Scientific, Singapore, 1995; Bammann in Proceedings of 2nd international conference on quenching and the control of distortion, vols 4–7, 1996) that features a finite strain theoretical framework for fiber-reinforced polymer (FRP) composites under various stress states, temperatures, strain rates, and history dependencies. In addition to the inelastic ISVs for the polymer matrix and interphase, new ISVs associated with the interaction between phases are introduced. A scalar damage variable is employed to capture the damage history of the FRP, which comprises three damage modes: matrix cracking, fiber breakage, and deterioration of the fiber–matrix interface. The constitutive model developed herein employs standard postulates of continuum mechanics with the kinematics, thermodynamics, and kinetics being internally consistent, whose ISVs can be either calculated from molecular dynamics simulations or calibrated through microstructural characterizations for specific FRPs. The developed elastothermoviscoplasticity and damage modeling framework is then employed to model the internal damage evolution of a glass fiber-reinforced polyamide 66 (Rolland et al. in Compos Part B Eng 90:65–377, 2016) in terms of above three damage mechanisms. A detailed description of the model parameter identification process is given by using the example of a unidirectional glass fiber-reinforced epoxy, and the mechanical behaviors and properties of the composites at varying temperature and fiber volume fraction are predicted by the model, which are in good agreement with the experimental result.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is sponsored by Mississippi NASA EPSCoR through its Research Infrastructure Development (RID) Program. The authors are grateful to Dr. Nathan Murray and other personnel in that program for their support. The authors are also grateful to the support provided by the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University (MSU). Dr. M. Q. Chandler would also like to thank the Army ERDC for supporting her on this project.

Funding

The funding was provided by Mississippi Space Grant Consortium.

References

  1. 1.
    Advani, S.G., Tucker, C.L.: The use of tensors to describe and predict fiber orientation in short fiber composite. J. Rheol. 31, 751–784 (1987)CrossRefGoogle Scholar
  2. 2.
    Allen, D.H., Harris, C.E., Groves, S.E.: Thermomechanical constitutive theory for elastic composites with distributed damage-I. Theoretical development. Int. J. Solids Struct. 23(9), 1301–1318 (1987)zbMATHCrossRefGoogle Scholar
  3. 3.
    Allen, D.H., Groves, S.E., Harris, C.E.: A cumulative damage model for continuous fiber composite laminates with matrix cracking and interplay delaminations. In: Composite Materials: Testing and Design. ASTM International, West Conhohocken, PA, pp. 57–80 (1988)Google Scholar
  4. 4.
    Allison, P.G., Grewal, H., Hammi, Y., Brown, H.R., Whittington, W.R., Horstemeyer, M.F.: Plasticity and fracture modeling/experimental study of a porous metal under various strain rates, temperatures, and stress states. J. Eng. Mater. Technol. (2013).  https://doi.org/10.1115/1.4025292
  5. 5.
    Ames, N.M., Srivastava, V., Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part ii: applications. Int. J. Plast. 25, 1495–1539 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Anand, L., Gu, C.: Granular materials: constitutive equations and strain localization. J. Mech. Phys. Solids 48, 1701–1733 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Anand, L., Gurtin, M.E.: A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int. J. Solids Struct. 40, 1465–1487 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Anand, L., Ames, N.M.: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22, 1123–1170 (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    Andriyana, A., Billon, N., Silva, L.: Mechanical response of a short fiber-reinforced thermoplastic: experimental investigation and continuum mechanical modeling. Eur. J. Mech. A Solids 29(6), 1065–1077 (2010)CrossRefGoogle Scholar
  10. 10.
    Bammann, D.J.: Modeling temperature and strain rate dependent large deformations of metals. Appl. Mech. Rev. 43(5S), 312–319 (1990)CrossRefGoogle Scholar
  11. 11.
    Bammann, D., Prantil, V., Kumar, A., Lowe, T., Jou, H.J., Lusk, M., Krauss, G., Dowling, B.: Development of a carburizing and quenching simulation tool: a material model for low carbon steels undergoing phase transformations. In: Proceedings of 2nd International Conference on Quenching and the Control of Distortion, vol. 4–7 (1996)Google Scholar
  12. 12.
    Bammann, D.J., Solanki, K.N.: On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycrystalline material. Int. J. Plast. 26(6), 775–793 (2010)zbMATHCrossRefGoogle Scholar
  13. 13.
    Bernasconi, A., Cosmi, F., Dreossi, D.: Local anisotropy analysis of injection moulded fibre reinforced polymer composites. Compos. Sci. Technol. 68(12), 2574–2581 (2008)CrossRefGoogle Scholar
  14. 14.
    Bouvard, J.L., Ward, D.K., Hossain, D., Marin, E.B., Bammann, D.J., Horstemeyer, M.F.: A general inelastic internal state variable model for amorphous glassy polymers. Acta Mech. 213(1), 77–96 (2010)zbMATHGoogle Scholar
  15. 15.
    Bouvard, J.L., Francis, D.K., Tschopp, M.A., Marin, E.B., Bammann, D.J., Horstemeyer, M.F.: An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation. Int. J. Plast. 42, 168–193 (2013)CrossRefGoogle Scholar
  16. 16.
    Boyce, M.C., Parks, D.M., Argon, A.S.: Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model. Mech. Mater. 7(1), 15–33 (1988)CrossRefGoogle Scholar
  17. 17.
    Budiansky, B., Hutchinson, J., Slutsky, S.: Void growth and collapse in viscous solids. In: Hopkins, H., Sewell, M. (eds.) Mechanics of Solids, pp. 13–45. Pergamon Press, Oxford (1982)zbMATHCrossRefGoogle Scholar
  18. 18.
    Cocks, A.C.F., Ashby, M.F.: Intergranular fracture during power-law creep under multiaxial stresses. Met. Sci. 14, 395–402 (1980)CrossRefGoogle Scholar
  19. 19.
    Coleman, B., Gurtin, M.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)CrossRefGoogle Scholar
  20. 20.
    Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–9 (1952)CrossRefGoogle Scholar
  21. 21.
    Dean, A., Sahraee, S., Reinoso, J., Rolfes, R.: Finite deformation model for short fiber reinforced composites: application to hybrid metal-composite clinching joints. Compos. Struct. 151(1), 162–171 (2016)CrossRefGoogle Scholar
  22. 22.
    Dean, A., Reinoso, J., Sahraee, S., Rolfes, R.: An invariant-based anisotropic material model for short fiber-reinforced thermoplastics: coupled thermo-plastic formulation. Compos. Part A Appl. Sci. Manuf. 90, 186–199 (2016)CrossRefGoogle Scholar
  23. 23.
    Dow, N.: Study of stress near a discontinuity in a filament-reinforced composite metal. In: Space SciLab Missile and Space Division, General Electric Company Technology, Report, No R63SD61 (1963)Google Scholar
  24. 24.
    Eitan, A., Fisher, F.T., Andrews, R., Brinson, L.C., Schadler, L.S.: Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos. Sci. Technol. 66(9), 1162–1173 (2006)CrossRefGoogle Scholar
  25. 25.
    Fotheringham, D., Cherry, B.W., Bauwens-Crowet, C.: Comment on the compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates. J. Mater. Sci. 11(7), 1368–1371 (1976)CrossRefGoogle Scholar
  26. 26.
    Fotheringham, D.G., Cherry, B.W.: The role of recovery forces in the deformation of linear polyethylene. J. Mater. Sci. 13, 951–964 (1978)CrossRefGoogle Scholar
  27. 27.
    Francis, D.K., Bouvard, J.L., Hammia, Y., Horstemeyer, M.F.: Formulation of a damage internal state variable model for amorphous glassy polymers. Int. J. Solids Struct. 51, 2765–2776 (2014)CrossRefGoogle Scholar
  28. 28.
    Freed, A.D., Raj, S.V.: Three-dimensional deformation analysis of two-phase dislocation substructures. Scr. Metall. Mater. 27(2), 233–238 (1992)CrossRefGoogle Scholar
  29. 29.
    Garrison, W.M., Moody, N.R.: Ductile fracture. J. Phys. Chem. Solids 48(11), 1035–1074 (1987)CrossRefGoogle Scholar
  30. 30.
    Gao, S.L., Mäder, E.: Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Compos. Part A Appl. Sci. Manuf. 33(4), 559–576 (2002)CrossRefGoogle Scholar
  31. 31.
    Goto, K.: Temperature dependence of elastic modulus of FRP glass fibers. J. Soc. Mater. Sci. Jpn. 42(475), 355–358 (1993)CrossRefGoogle Scholar
  32. 32.
    Halpin, J.C., Kardos, J.L.: The Halpin–Tsai equations: a review. Polym. Eng. Sci. 16(5), 344–352 (1976)CrossRefGoogle Scholar
  33. 33.
    Haque, A., Ramasetty, A.: Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 71(1), 68–77 (2005)CrossRefGoogle Scholar
  34. 34.
    Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)CrossRefGoogle Scholar
  35. 35.
    Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Hoboken (2000)zbMATHGoogle Scholar
  36. 36.
    Horstemeyer, M.F., Gokhale, A.M.: A void–crack nucleation model for ductile metals. Int. J. Solids Struct. 36, 5029–5055 (1999)zbMATHCrossRefGoogle Scholar
  37. 37.
    Horstemeyer, M.F., Lathrop, J., Gokhale, A., Dighe, M.: Modeling stress state dependent damage evolution in a cast Al–Si–Mg aluminum alloy. Theor. Appl. Fract. Mech. 33(1), 31–47 (2000)CrossRefGoogle Scholar
  38. 38.
    Horstemeyer, M.F., Matalanis, M.M., Sieber, A.M., Botos, M.L.: Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence. Int. J. Plast. 16, 979–1015 (2000b)zbMATHCrossRefGoogle Scholar
  39. 39.
    Horstemeyer, M.F., Bammann, D.J.: Historical review of internal state variable theory for inelasticity. Int. J. Plast. 26(9), 1310–1334 (2010)zbMATHCrossRefGoogle Scholar
  40. 40.
    Hossain, D., Tschopp, M.A., Ward, D.K., Bouvard, J.L., Wang, P.T., Horstemeyer, M.F.: Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51(25), 6071–6083 (2010)CrossRefGoogle Scholar
  41. 41.
    Jweeg, M.J., Hammood, A.S., Al-Waily, M.: Experimental and theoretical studies of mechanical properties for reinforcement fiber types of composite materials. Int. J. Mech. Mechatron. Eng. 12(4), 62–75 (2013)Google Scholar
  42. 42.
    Kachanov, L.M.: Rupture time under creep conditions. Izv. Akad. Nauk SSSR Otd. Tekhnicheskich Nauk 8, 26–31 (1958). (in Russian)Google Scholar
  43. 43.
    Klinkel, S., Sansour, C., Wagner, W.: An anisotropic fibre-matrix material model at finite elastic–plastic strains. Comput. Mech. 35(6), 409–417 (2005)zbMATHCrossRefGoogle Scholar
  44. 44.
    Krajcinovic, D., Foneska, G.U.: The continuum damage theory for brittle materials. J. Appl. Mech. 48, 809–824 (1981)CrossRefGoogle Scholar
  45. 45.
    Krajcinovic, D.: Constitutive equations for damaging materials. J. Appl. Mech. 50, 355–360 (1983)zbMATHCrossRefGoogle Scholar
  46. 46.
    Lacy, T.E., McDowell, D.L., Willice, P.A., Talreja, R.: On representation of damage evolution in continuum damage mechanics. Int. J. Damage Mech. 6, 62–95 (1997)CrossRefGoogle Scholar
  47. 47.
    Lee, E.H., Liu, D.T.: Finite strain elastic–plastic theory with application to plane-wave analysis. J. Appl. Phys. 38(1), 391–408 (1967)Google Scholar
  48. 48.
    Liu, L., Liu, Q.S., Tang, Y.R., Zhang, R.L., Jing, J.H., Wang, X.M., Huang, Y.D.: Preparation method of water-base epoxy resin sizing agent for carbon fiber. CN201010300131.3Google Scholar
  49. 49.
    Maligno, A.R., Warrior, N.A., Long, A.C.: Effects of interphase material properties in unidirectional fibre reinforced composites. Compos. Sci. Technol. 70(1), 36–44 (2010)CrossRefGoogle Scholar
  50. 50.
    Mandel, J.: Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973)zbMATHCrossRefGoogle Scholar
  51. 51.
    Mayes, J.S., Hansen, A.: Composite laminate failure analysis using multicontinuum theory. Compos. Sci. Technol. 64, 379–394 (2004)CrossRefGoogle Scholar
  52. 52.
    Morelle, X.P., Lani, F., Melchior, M.A., André, S., Bailly, C., Pardoen, T.: The elasto-viscoplasticity and fracture behaviour of the RTM6 structural epoxy and impact on the response of woven composites. In: 15th European Conference on Composite Materials (2012)Google Scholar
  53. 53.
    Miller, M., McDowell, D.: Stress state dependence of finite strain inelasticity. In: Voyiadjis, G. (ed.) ASME Summer Mechanics Meeting: Microstructural Characterization in Constitutive Modeling of Metals and Granular Media, pp. 27–44. American Society of Mechanical Engineers, Tucson (1992)Google Scholar
  54. 54.
    Mughrabi, H.: Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall. 31(9), 1367–1379 (1983)CrossRefGoogle Scholar
  55. 55.
    Nedjar, B.: An anisotropic viscoelastic fibre-matrix model at finite strains: continuum formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 196, 1745–1756 (2007)zbMATHCrossRefGoogle Scholar
  56. 56.
    Nguyen, T.D., Jones, R.E., Boyce, B.L.: Modeling of the anisotropic finite deformation viscoelastic behavior of soft fiber-reinforced composites. Int. J. Solids Struct. 44, 8366–8389 (2007)zbMATHCrossRefGoogle Scholar
  57. 57.
    Notta-Cuvier, D., Lauro, F., Bennani, B., Balieu, R.: An efficient modelling of inelastic composites with misaligned short fibres. Int. J. Solids Struct. 50(19), 2857–2871 (2013)CrossRefGoogle Scholar
  58. 58.
    Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. Advances in Mathematics for the Applied Sciences. World Scientific, Singapore (1995)zbMATHCrossRefGoogle Scholar
  59. 59.
    Richeton, J., Ahzi, S., Daridon, L., Rémond, Y.: A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer 46(16), 6035–6043 (2005)CrossRefGoogle Scholar
  60. 60.
    Richeton, J., Ahzi, S., Vecchio, K., Jiang, F., Makradi, A.: Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int. J. Solids Struct. 44, 7938–7954 (2007)zbMATHCrossRefGoogle Scholar
  61. 61.
    Rolland, H., Saintier, N., Robert, G.: Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests. Compos. Part B Eng. 90, 65–377 (2016)CrossRefGoogle Scholar
  62. 62.
    Spencer, A.: Constitutive theory for strongly anisotropic solids. In: Spencer, A. (ed.) Continuum Theory of the Mechanics of Fibre-reinforced composites, CISM Courses and Lectures No. 282. Springer, Wien (1984)Google Scholar
  63. 63.
    Taylor, G.: Analysis of plastic strain in a cubic crystal. Stephen Timoshenko 60th Anniversary, vol. 218–224 (1938)Google Scholar
  64. 64.
    Talreja, R.: Stiffness properties of composite laminates with matrix cracking and interior delamination. Eng. Fract. Mech. 25, 751–62 (1986)CrossRefGoogle Scholar
  65. 65.
    Talreja, R.: Damage development in composite: mechanism and modeling. J. Strain Anal. Eng. Des. 24, 215–222 (1989)CrossRefGoogle Scholar
  66. 66.
    Talreja, R.: Continuum modelling of damage in ceramic matrix composites. Mech. Mater. 12, 165–180 (1991)CrossRefGoogle Scholar
  67. 67.
    Thomason, J.L., Adzima, L.J.: Sizing up the interphase: an insider’s guide to the science of sizing. Compos. Part A Appl. Sci. Manuf. 32, 313–321 (2001)CrossRefGoogle Scholar
  68. 68.
    Torabizadeh, M.A.: Tensile, compressive and shear properties of unidirectional glass/epoxy composites subjected to mechanical loading and low temperature services. Indian J. Eng. Mater. Sci. 20(4), 299–309 (2013)Google Scholar
  69. 69.
    Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)CrossRefGoogle Scholar
  70. 70.
    Vincent, M., Giroud, T., Clarke, A., Eberhardt, C.: Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics. Polymer 46(17), 6719–6725 (2005)CrossRefGoogle Scholar
  71. 71.
    Voyiadjis, G.Z., Deliktas, B.: A coupled anisotropic damage model for the inelastic response of composite materials. Comput. Methods Appl. Mech. Eng. 183(3–4), 159–199 (2000)zbMATHCrossRefGoogle Scholar
  72. 72.
    Voyiadjis, G.Z., Deliktas, B., Aifantis, E.C.: Multiscale analysis of multiple damage mechanisms coupled with inelastic behavior of composite materials. J. Eng. Mech. 127(7), 636–645 (2001)CrossRefGoogle Scholar
  73. 73.
    Wacker, G., Bledzki, A.K., Chate, A.: Effect of interphase on the transverse Young’s modulus of glass/epoxy composites. Compos. Part A Appl. Sci. Manuf. 29(5–6), 619–626 (1998)CrossRefGoogle Scholar
  74. 74.
    Wu, Y.P., Jia, Q.X., Yu, D.S., Zhang, L.Q.: Modeling Young’s modulus of rubber–clay nanocomposites using composite theories. Polym. Test. 23(8), 903–909 (2004)CrossRefGoogle Scholar
  75. 75.
    Zhandarov, S., Mäder, E.: Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters. Compos. Sci. Technol. 65, 149–160 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Ge He
    • 1
    • 2
    Email author
  • Yucheng Liu
    • 1
    • 2
  • D. J. Bammann
    • 1
    • 2
  • D. K. Francis
    • 1
    • 2
  • M. Q. Chandler
    • 3
  • M. F. Horstemeyer
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringMississippi State UniversityMississippi StateUSA
  2. 2.Center for Advanced Vehicular SystemsMississippi State UniversityMississippi StateUSA
  3. 3.Army Engineering Research and Development Center (ERDC)VicksburgUSA

Personalised recommendations