Mechanics of structure genome-based global buckling analysis of stiffened composite panels


Stiffened panels buckle under compressive loads which would degrade load-bearing capabilities of the structures. Fast yet accurate estimations of buckling loads and associated mode shapes are critical in the early stages of design and optimization. This paper presents a method based on the mechanics of structure genome (MSG) for the global buckling analysis of stiffened composite panels. The original geometrically nonlinear problem is mathematically reduced to a geometrically linear constitutive modeling of the structure genome and a geometrically nonlinear formulation of the macroscopic plate analysis. Validation case studies show that MSG is highly accurate and efficient as compared to the detailed finite element analysis. The buckling behaviors of stiffened panels under various boundary conditions and loadings are investigated.

This is a preview of subscription content, log in to check access.


  1. 1.

    Zheng, Q., Jiang, D., Huang, C., Shang, X., Ju, S.: Analysis of failure loads and optimal design of composite lattice cylinder under axial compression. Compos. Struct. 131, 885 (2015)

    Google Scholar 

  2. 2.

    Lopatin, A., Morozov, E.: Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure. Compos. Struct. 122, 209 (2015)

    Google Scholar 

  3. 3.

    Wodesenbet, E., Kidane, S., Pang, S.S.: Optimization for buckling loads of grid stiffened composite panels. Compos. Struct. 60(2), 159 (2003)

    Google Scholar 

  4. 4.

    Fenner, P.E.: Finite element buckling analysis of stiffened plates with filleted junctions. Thin-Walled Struct. 59, 171 (2012)

    Google Scholar 

  5. 5.

    Bisagni, C., Vescovini, R.: Analytical formulation for local buckling and post-buckling analysis of stiffened laminated panels. Thin-Walled Struct. 47(3), 318 (2009)

    Google Scholar 

  6. 6.

    Stamatelos, D., Labeas, G., Tserpes, K.: Analytical calculation of local buckling and post-buckling behavior of isotropic and orthotropic stiffened panels. Thin-Walled Struct. 49(3), 422 (2011)

    Google Scholar 

  7. 7.

    Szilard, R.: Theories and Applications of Plate Analysis: Classical Numerical and Engineering Methods. Wiley, Hoboken (2004)

    Google Scholar 

  8. 8.

    Chen, H.J., Tsai, S.W.: Analysis and optimum design of composite grid structures. J. Compos. Mater. 30(4), 503 (1996)

    Google Scholar 

  9. 9.

    Sadeghifar, M.: Buckling analysis of stringer-stiffened laminated cylindrical shells with nonuniform eccentricity. Arch. Appl. Mech. 81(7), 875 (2011)

    MATH  Google Scholar 

  10. 10.

    Jaunky, N., Knight, N.F., Ambur, D.R.: Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels. Compos. Part B 27(5), 519 (1996)

    Google Scholar 

  11. 11.

    Byklum, E., Steen, E., Amdahl, J.: A semi-analytical model for global buckling and postbuckling analysis of stiffened panels. Thin-Walled Struct. 42(5), 701 (2004)

    Google Scholar 

  12. 12.

    Kidane, S., Li, G., Helms, J., Pang, S.S., Woldesenbet, E.: Buckling load analysis of grid stiffened composite cylinders. Compos. Part B 34(1), 1 (2003)

    Google Scholar 

  13. 13.

    Xu, Y., Tong, Y., Liu, M., Suman, B.: A new effective smeared stiffener method for global buckling analysis of grid stiffened composite panels. Compos. Struct. 158, 83 (2016)

    Google Scholar 

  14. 14.

    Ren, M., Li, T., Huang, Q., Wang, B.: Numerical investigation into the buckling behavior of advanced grid stiffened composite cylindrical shell. J. Reinf. Plast. Compos. 33(16), 1508 (2014)

    Google Scholar 

  15. 15.

    Wang, B., Tian, K., Hao, P., Zheng, Y., Ma, Y., Wang, J.: Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells. Compos. Struct. 152, 807 (2016)

    Google Scholar 

  16. 16.

    Ninh, D.G., Bich, D.H., Kien, B.H.: Torsional buckling and post-buckling behavior of eccentrically stiffened functionally graded toroidal shell segments surrounded by an elastic medium. Acta Mech. 226(10), 3501 (2015)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Bich, D.H., Ninh, D.G.: Research on dynamical buckling of imperfect stiffened three-layered toroidal shell segments containing fluid under mechanical loads. Acta Mech. 228(2), 711 (2017)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Dung, D., Nga, N.: Buckling and postbuckling nonlinear analysis of imperfect FGM plates reinforced by FGM stiffeners with temperature-dependent properties based on TSDT. Acta Mech. 227(8), 2377 (2016)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Dung, D., Hoai, B., Hoa, L.: Postbuckling nonlinear analysis of FGM truncated conical shells reinforced by orthogonal stiffeners resting on elastic foundations. Acta Mech. 228(4), 1457 (2017)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Chan, D., Dung, D., Hoa, L.: Thermal buckling analysis of stiffened FGM truncated conical shells resting on elastic foundations using FSDT. Acta Mech. 229(5), 2221 (2018)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Hassani, B., Hinton, E.: A review of homogenization and topology optimization I: homogenization theory for media with periodic structure. Comput. Struct. 69(6), 707 (1998)

    MATH  Google Scholar 

  22. 22.

    Kwon, Y.W., Allen, D.H., Talreja, R.: Multiscale Modeling and Simulation of Composite Materials and Structures. Springer, New York (2008)

    Google Scholar 

  23. 23.

    Kalamkarov, A.L., Andrianov, I.V., Danishevs’kyy, V.V.: Asymptotic homogenization of composite materials and structures. Appl. Mech. Rev. 62(3), 030802 (2009)

    Google Scholar 

  24. 24.

    Challagulla, K., Georgiades, A., Kalamkarov, A.: Asymptotic homogenization modeling of smart composite generally orthotropic grid-reinforced shells: part I theory. Eur. J. Mech. A Solids 29(4), 530 (2010)

    MathSciNet  Google Scholar 

  25. 25.

    Wang, D., Abdalla, M.M.: Global and local buckling analysis of grid-stiffened composite panels. Compos. Struct. 119, 767 (2015)

    Google Scholar 

  26. 26.

    Yu, W.: A unified theory for constitutive modeling of composites. J. Mech. Mater. Struct. 11(4), 379 (2016)

    MathSciNet  Google Scholar 

  27. 27.

    Liu, X., Yu, W.: A novel approach to analyze beam-like composite structures using mechanics of structure genome. Adv. Eng. Softw. 100, 238 (2016)

    Google Scholar 

  28. 28.

    Peng, B., Goodsell, J., Pipes, R.B., Yu, W.: Generalized free-edge stress analysis using mechanics of structure genome. J. Appl. Mech. 83(10), 101013 (2016)

    Google Scholar 

  29. 29.

    Liu, N., Yu, W.: Evaluation of smeared properties approaches and mechanics of structure genome for analyzing composite beams. Mech. Adv. Mater. Struct. 25, 1–15 (2017)

    MathSciNet  Google Scholar 

  30. 30.

    Rouf, K., Liu, X., Yu, W.: Multiscale structural analysis of textile composites using mechanics of structure genome. Int. J. Solids Struct. 89, 136–137 (2018)

    Google Scholar 

  31. 31.

    Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357 (1963)

    MATH  Google Scholar 

  32. 32.

    Zhang, D., Waas, A.M.: A micromechanics based multiscale model for nonlinear composites. Acta Mech. 225(4–5), 1391 (2014)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Allaire, G., Brizzi, R.: A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4(3), 790 (2005)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Yang, D., Zhang, H., Zhang, S., Lu, M.: A multiscale strategy for thermo-elastic plastic stress analysis of heterogeneous multiphase materials. Acta Mech. 226(5), 1549 (2015)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods Theory and Applications. Springer, Berlin (2009)

    Google Scholar 

  36. 36.

    Hou, T., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169 (1997)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Yu, W., Hodges, D.H., Volovoi, V.V.: Asymptotic construction of Reissner-like composite plate theory with accurate strain recovery. Int. J. Solids Struct. 39(20), 5185 (2002)

    MATH  Google Scholar 

  38. 38.

    Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications. AMS Chelsea Publishing, Providence (1978)

    Google Scholar 

  39. 39.

    Danielson, D.A., Hodges, D.H.: Nonlinear beam kinematics by decomposition of the rotation tensor. J. Appl. Mech. 54(2), 258 (1987)

    MATH  Google Scholar 

  40. 40.

    Yu, W., Hodges, D.H., Ho, J.C.: Variational asymptotic beam sectional analysis: an updated version. Int. J. Eng. Sci. 59, 40 (2012)

    MathSciNet  MATH  Google Scholar 

  41. 41.

    Yu, W., Hodges, D.H.: A geometrically nonlinear shear deformation theory for composite shells. J. Appl. Mech. 71(1), 1 (2004)

    MATH  Google Scholar 

  42. 42.

    Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774 (2009)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Cosserat, E., Cosserat, F., et al.: Théorie des corps déformables (1909)

  44. 44.

    Yu, W., Hodges, D.H., Volovoi, V.V.: Asymptotic generalization of Reissner–Mindlin theory: accurate three-dimensional recovery for composite shells. Comput. Methods Appl. Mech. Eng. 191(44), 5087 (2002)

    MATH  Google Scholar 

  45. 45.

    Lopatin, A., Morozov, E.: Buckling of the SSCF rectangular orthotropic plate subjected to linearly varying in-plane loading. Compos. Struct. 93(7), 1900 (2011)

    Google Scholar 

  46. 46.

    Shufrin, I., Rabinovitch, O., Eisenberger, M.: Buckling of symmetrically laminated rectangular plates with general boundary conditions: a semi-analytical approach. Compos. Struct. 82(4), 521 (2008)

    MATH  Google Scholar 

  47. 47.

    Meziane, M.A.A., Abdelaziz, H.H., Tounsi, A.: An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J. Sandw. Struct. Mater. 16(3), 293 (2014)

    Google Scholar 

  48. 48.

    Panda, S.K., Ramachandra, L.: Buckling of rectangular plates with various boundary conditions loaded by non-uniform inplane loads. Int. J. Mech. Sci. 52(6), 819 (2010)

    Google Scholar 

  49. 49.

    Hamedani, S.J., Ranji, A.R.: Buckling analysis of stiffened plates subjected to non-uniform biaxial compressive loads using conventional and super finite elements. Thin-Walled Struct. 64, 41 (2013)

    Google Scholar 

  50. 50.

    Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  51. 51.

    Riks, E.: The application of Newton’s method to the problem of elastic stability. J. Appl. Mech. 39(4), 1060 (1972)

    MATH  Google Scholar 

  52. 52.

    Riks, E.: Some computational aspects of the stability analysis of nonlinear structures. Comput. Methods Appl. Mech. Eng. 47(3), 219 (1984)

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Wenbin Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Yu, W. & Hodges, D.H. Mechanics of structure genome-based global buckling analysis of stiffened composite panels. Acta Mech 230, 4109–4124 (2019).

Download citation