Skip to main content

Three-dimensional modeling of complex swirling flows in champagne glasses: CFD and flow visualization

Abstract

The aim of the present study is to propose a reliable tool based on the CFD method which aims to predict the bubble-induced flow patterns in a champagne glass whatever its glass shape or bubbling conditions. This paper presents the various steps of the analysis which is carried out using a CFD commercial code with a 3D multiphase model based on the Eulerian–Lagrangian approach. The VOF multiphase model, coupled with a discrete phase (simulating the presence of ascending bubbles), was used to model the behavior of the liquid phase (the wine), the gaseous phase, and the interface between them. Subroutines were implemented in the 3D CFD code allowing to reproduce the process of bubble ascent dynamics. For this study aimed at qualitatively validating the numerical model, only one glass geometry is studied, and the CFD results are compared with experimental data obtained both by laser tomography and 2D PIV. Numerical simulations allowed us to test some assumptions that would be difficult to corroborate by experimental methods. Finally, the complex topological information deduced from CFD simulations turned out satisfactory and offered a realistic approach of the flow. These facts represent proofs of the predictive potential of the developed numerical tool.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Phillips, R.: French Wine: A History. Univ. of California Press, California (2016)

    Google Scholar 

  2. 2.

    Liger-Belair, G.: The physics and chemistry behind the bubbling properties of champagne and sparkling wines: a state-of-the-art review. J. Agric. Food Chem. 53, 2788–2802 (2005)

    Article  Google Scholar 

  3. 3.

    Duteurtre, B.: Le Champagne, de la Tradition à la Science. Tec & Doc Lavoisier, Paris (2010)

    Google Scholar 

  4. 4.

    Liger-Belair, G.: Effervescence in champagne and sparkling wines: from grape harvest to bubble rise. Eur. Phys. J. Spec. Top. 226, 3–116 (2017)

    Article  Google Scholar 

  5. 5.

    Ottino, J.M.: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  6. 6.

    Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S.: Fundamentals of Heat and Mass Transfer, 6th edn. Wiley, Hoboken (2006)

    Google Scholar 

  7. 7.

    Polidori, G., Jeandet, P., Liger-Belair, G.: Bubbles and flow patterns in champagne. Am. Sci. 97, 294–301 (2009)

    Article  Google Scholar 

  8. 8.

    Beaumont, F., Liger-Belair, G., Bailly, Y., Polidori, G.: A synchronized particle image velocimetry and infrared thermography technique applied to convective mass transfer in champagne glasses. Exp. Fluids 57, 85 (2016)

    Article  Google Scholar 

  9. 9.

    Beaumont, F., Liger-Belair, G., Polidori, G.: Unveiling self-organized two-dimensional (2D) convective cells in champagne glasses. J. Food Eng. 188, 58–65 (2016)

    Article  Google Scholar 

  10. 10.

    Beaumont, F., Popa, C., Liger-Belair, G., Polidori, G.: Numerical modeling of bubble-induced flow patterns in champagne glasses. Int. J. Numer. Methods Heat Fluid Flow 24, 563–578 (2014)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Keating, M.: Accelerating CFD solutions ANSYS Advantage, 48-49 (2011)

  12. 12.

    Shams, E., Finn, J., Apte, S.V.: A numerical scheme for Euler–Lagrange simulation of bubbly flows in complex systems. Int. J. Numer. Meth. Fluids 67, 1865–1898 (2011)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Groll, R., Jakirlić, S., Tropea, C.: Comparative study of Euler/Euler and Euler/Lagrange approaches simulating evaporation in a turbulent gas–liquid flow. Int. J. Numer. Meth. Fluids 59, 873–906 (2009)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Park, I.R., Kim, K.S., Kim, J., Van, S.H.: A volume-of-fluid method for incompressible free surface flows. Int. J. Numer. Meth. Fluids 61, 1331–1362 (2009)

    MathSciNet  Article  Google Scholar 

  15. 15.

    VanSintAnnaland, M., Deen, N.G., Kuipers, J.A.M.: Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem. Eng. Sci. 60, 2999–3011 (2005)

    Article  Google Scholar 

  16. 16.

    Rabha Swapna, S., Buwa Vivek, V.: Volume-of-fluid (VOF) simulations of rise of single/multiple bubbles in sheared liquids. Chem. Eng. Sci. 65, 527–537 (2010)

    Article  Google Scholar 

  17. 17.

    Nikseresht, A.H., Alishahi, M.M., Emdad, H.: Complete flow field computation around an ACV (air-cushion vehicle) using 3D VOF with Lagrangian propagation in computational domain. Comput. Struct. 86, 627–641 (2008)

    Article  Google Scholar 

  18. 18.

    Shi, S.P., Zitney, S.E., Shahnam, M., Syamlal, M., Rogers, W.A.: Modelling coal gasification with CFD and discrete phase method. J. Energy Inst. 79, 217–221 (2006)

    Article  Google Scholar 

  19. 19.

    Patankar, N.A., Joseph, D.D.: Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach. Int. J. Multiph. Flow 27, 1659–1684 (2001)

    Article  Google Scholar 

  20. 20.

    Asnaashari, A., Akbar Akhtari, A., Dehghani, A.A., Bonakdari, H.: Experimental and numerical investigation of the flow field in the gradual transition of rectangular to trapezoidal open channels. Eng. Appl. Comput. Fluid Mech. 10(1), 272–282 (2016)

    Google Scholar 

  21. 21.

    Abbaspour, A., Kia, S.H.: Numerical investigation of turbulent open channel flow with semi-cylindrical rough beds. KSCE J. Civ. Eng. 18, 2252–2260 (2014)

    Article  Google Scholar 

  22. 22.

    Knight, D.W., Demetriou, J.D.: Open channel flow with varying bed roughness. J. Hydraul. Eng. Hydrol. Sci. Div. 105(9), 1167–1183 (1979)

    Google Scholar 

  23. 23.

    Herrmann, E., Lihavainen, H., Hyvärinen, A.P., Riipinen, I., Wilck, M., Stratmann, F., Kulmala, M.: Nucleation simulations using the fluid dynamics software FLUENT with the fine particle model FPM. J. Phys. Chem. 110, 12448–12455 (2006)

    Article  Google Scholar 

  24. 24.

    Liger Belair, G., Jeandet, P.: More on the surface state of expanding champagne bubbles rising at intermediate Reynolds and high Peclet numbers. Langmuir 19, 801–808 (2003)

    Article  Google Scholar 

  25. 25.

    Magnaudet, J., Rivero, M., Fabre, J.: Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97–135 (1995)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Maxworthy, T., Gnann, C., Kürten, M., Durst, F.: Experiments on the rise of air bubbles in clean viscous liquids. J. Fluid Mech. 321, 421–441 (1996)

    Article  Google Scholar 

  27. 27.

    Perry, A.E., Chong, M.S.: A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19, 125–155 (1987)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabien Beaumont.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beaumont, F., Liger-Belair, G. & Polidori, G. Three-dimensional modeling of complex swirling flows in champagne glasses: CFD and flow visualization. Acta Mech 230, 213–224 (2019). https://doi.org/10.1007/s00707-018-2311-3

Download citation