Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative

Abstract

Enlightened by the Caputo fractional derivative, the present study deals with a novel mathematical model of generalized thermoelasticity to investigate the transient phenomena due to the influence of a non-Gaussian pulsed laser type heat source in a stress free isothermal half-space in the context of Lord–Shulman (LS), dual-phase lag (DPL), and three-phase lag (TPL) theories of thermoelasticity simultaneously. The memory-dependent derivative is defined in an integral form of a common derivative on a slipping interval by incorporating the memory-dependent heat transfer. Employing Laplace transform as a tool, the problem has been transformed to the space-domain, and it is then solved analytically. To get back all the thermophysical quantities as a function of real time, we use two Laplace inversion formulas, viz. Fourier series expansion technique (Honig in J Comput Appl Math10(1):113–132, 1984) and Zakian method (Electron Lett 6(21):677–679, 1970). According to the graphical representations corresponding to the numerical results, a comparison among LS, DPL, and TPL model has been studied in the presence and absence of a memory effect simultaneously. Moreover, the effects of a laser pulse have been studied in all the thermophysical quantities for different kernels (randomly chosen) and different delay times. Then, the results are depicted graphically. Finally, a comparison of results, deriving from the two numerical inversion formulas, has been made.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Honig, G., Hirdes, U.: A method for the numerical inversion of Laplace transforms. J. Comput. Appl. Math. 10(1), 113–132 (1984)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Zakian, V.: Optimisation of numerical inversion of Laplace transforms. Electron. Lett. 6(21), 677–679 (1970)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids. 15(5), 299–309 (1967)

    MATH  Article  Google Scholar 

  5. 5.

    Sherief, H.H.: On uniqueness and stability in generalized thermoelasticity. Q. Appl. Math. 44(4), 773–778 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Ezzat, M.A., El-Karamany, A.S.: On uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with thermal relaxation. Can. J. Phys. 81(6), 823–833 (2003)

    Article  Google Scholar 

  7. 7.

    Ezzat, M.A., El-Karamany, A.S.: The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media. J. Therm. Stresses 25(6), 507–522 (2002)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Ezzat, M.A., El-Karamany, A.S.: Propagation of discontinuities in magneto-thermoelastic half-space. J. Therm. Stresses 29(4), 331–358 (2006)

    Article  Google Scholar 

  9. 9.

    El-Karamany, A.S., Ezzat, M.A.: Discontinuities in generalized thermo-viscoelasticity under four theories. J. Therm. Stresses 27(12), 1187–1212 (2004)

    MATH  Article  Google Scholar 

  10. 10.

    El-Karamany, A.S., Ezzat, M.A.: On the boundary integral formulation of thermo-viscoelasticity theory. Int. J. Eng. Sci. 40(17), 1943–1956 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    El-Karamany, A.S., Ezzat, M.A.: Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times. Appl. Math. Comput. 151(2), 347–362 (2004)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Ignaczak, J.: Generalized thermoelasticity and its applications. Therm. Stresses 3, 279–354 (1989)

    MATH  MathSciNet  Google Scholar 

  13. 13.

    Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  Google Scholar 

  14. 14.

    Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Article  Google Scholar 

  15. 15.

    Chirita, S.: On the time differential dual-phase-lag thermoelastic model. Meccanica 52(1–2), 349–361 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Zenkour, A.M.: A generalized thermoelastic dual-phase-lagging response of thick beams subjected to harmonically varying heat and pressure. J. Theor. Appl. Mech. 56(1), 15–30 (2018)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Abbas, I.A., Mohamed, E.A.E.: Dual-phase-lag model on generalized magneto–thermoelastic interaction in a functionally graded material. Int. J. Acoust. Vib. 22(3), 369–376 (2017)

    Google Scholar 

  18. 18.

    Quintanilla, R., Racke, R.: Qualitative aspects in dual-phase-lag thermoelasticity. SIAM J. Appl. Math. 66(3), 977–1001 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Choudhuri, S.R.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30(3), 231–238 (2007)

    Article  Google Scholar 

  20. 20.

    Ibrahim, E., Atwa, S., Ammar, M.K.: The effect of two-temperature on thermoelastic medium with diffusion due to three phase-lag model. Appl. Math. Nonlinear Sci. 2(1), 259–270 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Sur, A., Kanoria, M.: Propagation of thermal waves in a functionally graded thick plate. Math. Mech. Solids 22(4), 718–736 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Sur, A., Pal, P., Kanoria, M.: Modeling of memory-dependent derivative in a fiber-reinforced plate under gravitational effect. J. Therm. Stresses 41(8), 973–992 (2018)

    Article  Google Scholar 

  23. 23.

    Sur, A., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate. Thin-Walled Struct. 126, 85–93 (2018)

    Article  Google Scholar 

  24. 24.

    Purkait, P., Sur, A., Kanoria, M.: Thermoelastic interaction in a two dimensional infinite space due to memory dependent heat transfer. Int. J. Adv. Appl. Math. Mech. 5(1), 28–39 (2017)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity: response of semi-space to a short laser pulse. J. Therm. Stresses 17(3), 377–396 (1994)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Dubois, M., Enguehard, F., Bertrand, L., Choquet, M., Monchalin, J.P.: Modeling of laser thermoelastic generation of ultrasound in an orthotropic medium. Appl. Phys. Lett. 64(5), 554–556 (1994)

    Article  Google Scholar 

  27. 27.

    Wang, X., Xu, X.: Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A. 73(1), 107–114 (2001)

    Article  Google Scholar 

  28. 28.

    Wang, X., Xu, X.: Thermoelastic wave in metal induced by ultrafast laser pulses. J. Therm. Stresses 25(5), 457–473 (2002)

    Article  Google Scholar 

  29. 29.

    Youssef, H.M., El-Bary, A.A.: Thermoelastic material response due to laser pulse heating in context of four theorems of thermoelasticity. J. Therm. Stresses 37(12), 1379–1389 (2014)

    Article  Google Scholar 

  30. 30.

    Sun, Y., Ma, J., Wang, X., Soh, A.K., Yang, J.: Thermoelastic response of a one-dimensional semi-infinite rod heated by a moving laser pulse. Can. J. Phys. 94(10), 953–959 (2016)

    Article  Google Scholar 

  31. 31.

    Othman, M.I., Tantawi, R.S.: The effect of a laser pulse and gravity field on a thermoelastic medium under Green–Naghdi theory. Acta Mech. 227(12), 3571–3583 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Othman, M.I., Marin, M.: The effect of heat laser pulse on generalized thermoelasticity for micropolar medium. Mech. Eng. 21(4), 797–811 (2017)

    Google Scholar 

  33. 33.

    Povstenko, Y.: Fractional heat conduction equation and associated thermal stress. J. Therm. Stresses 28(1), 83–102 (2004)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Povstenko, Y.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stresses 34(2), 97–114 (2011)

    Article  Google Scholar 

  35. 35.

    Povstenko, Y.: Fractional Thermoelasticity. Springer, Berlin (2015)

    Google Scholar 

  36. 36.

    Sur, A., Kanoria, M.: Thermoelastic interaction in a viscoelastic functionally graded half-space under three-phase-lag model. Eur. J. Comput. Mech. 23(5–6), 179–198 (2014)

    Article  Google Scholar 

  37. 37.

    Bhattacharya, D., Kanoria, M.: The influence of two-temperature fractional order generalized thermoelastic diffusion inside a spherical shell. Int. J. Appl. Innov. Eng. Manag. 3, 96–108 (2014)

    Google Scholar 

  38. 38.

    Sur, A., Kanoria, M.: Fractional order two-temperature thermoelasticity with finite wave speed. Acta Mech. 223(12), 2685–2701 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Mondal, S., Mallik, S.H., Kanoria, M.: Fractional order two-temperature dual-phase-lag thermoelasticity with variable thermal conductivity. Int. Sch. Res. Notices. (2014). https://doi.org/10.1155/2014/646049

  40. 40.

    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

    Google Scholar 

  41. 41.

    Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Google Scholar 

  42. 42.

    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  43. 43.

    Wang, J.-L., Li, H.-F.: Surpassing the fractional derivative: Concept of the memory-dependent derivative. Comput. Math. Appl. 62(3), 1562–1567 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Sherief, H.H., El-Sayed, A.M.A., El-Latief, A.M.A.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47(2), 269–275 (2010)

    MATH  Article  Google Scholar 

  45. 45.

    Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermo-viscoelasticity with memory-dependent derivatives. Int. J. Mech. Sci. 89, 470–475 (2014)

    Article  Google Scholar 

  46. 46.

    Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: A novel magneto-thermoelasticity theory with memory-dependent derivative. J. Electromagn. Wave. Appl. 29(8), 1018–1031 (2015)

    Article  Google Scholar 

  47. 47.

    Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mech. Adv. Mater. Struct. 23(5), 545–553 (2016)

    Article  Google Scholar 

  48. 48.

    Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Thermoelectric viscoelastic materials with memory-dependent derivative. Smart Struct. Sys. 19, 539–551 (2017)

    Article  Google Scholar 

  49. 49.

    Kant, S., Mukhopadhyay, S.: An investigation on responses of thermoelastic interactions in a generalized thermoelasticity with memory-dependent derivatives inside a thick plate. Math. Mech. Solids.(2018). https://doi.org/10.1177/1081286518755562

  50. 50.

    Shaw, S., Mukhopadhyay, B.: A discontinuity analysis of generalized thermoelasticity theory with memory-dependent derivatives. Acta Mech. 228(7), 2675–2689 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Sun, Y., Fang, D., Saka, M., Soh, A.K.: Laser-induced vibrations of micro-beams under different boundary conditions. Int. J. Solids Struct. 45(7–8), 1993–2013 (2008)

    MATH  Article  Google Scholar 

  52. 52.

    Youssef, H.M., Al-Felali, A.S.: Generalized thermoelasticity problem of material subjected to thermal loading due to laser pulse. Appl. Math. 3(02), 142–146 (2012)

    MathSciNet  Article  Google Scholar 

  53. 53.

    Bachher, M., Sarkar, N.: Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer. Waves Random Complex Medium, pp. 1–19 (2018). https://doi.org/10.1080/17455030.2018.1457230

  54. 54.

    Ezzat, M.A., El-Karamany, A.S.: Fractional order theory of a perfect conducting thermoelastic medium. Can. J. Phys. 89(3), 311–318 (2011)

    Article  Google Scholar 

  55. 55.

    Quintanilla, R., Racke, R.: A note on stability in three-phase-lag heat conduction. Int. J. Heat Mass Transf. 51(1–2), 24–29 (2008)

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Kanoria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Pal, P. & Kanoria, M. Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech 230, 179–199 (2019). https://doi.org/10.1007/s00707-018-2307-z

Download citation