Advertisement

Acta Mechanica

, Volume 230, Issue 2, pp 623–644 | Cite as

Toward the predictive simulation of bouncing versus coalescence in binary droplet collisions

  • M. Liu
  • D. BotheEmail author
Original Paper

Abstract

Multi-scale simulations have been conducted in order to predict the collision outcome bouncing versus coalescence in numerical simulations. The flow on the macroscopic scale is solved by the Volume of Fluid code FS3D. On the microscopic scale, the flow in the gas film between the colliding droplets before possible coalescence is solved by a Sub-grid-scale (SGS) model, which is derived based on the classical lubrication theory and accounts for rarefaction effects. The SGS model has been implemented in FS3D and validated by means of comparing the obtained pressure field to that computed analytically and by means of direct numerical simulations. For the coupling of the SGS model with FS3D, the pressure field obtained from the SGS model applies as a pressure boundary condition on the collision plane. Employing the intersection of the PLIC surfaces with the collision plane as a coalescence criterion, the simulation has been able to yield both coalescence and bouncing. The predicted critical Weber number so far depends on the grid resolution; hence, further developments of the multi-scale approach are still required.

Nomenclature

Notation

\(\varvec{u}\)

Velocity vector

\(\varvec{g}\)

Body force

\(\varvec{f}_\varSigma \)

Surface tension force

f

Phase indicator

\(\rho \)

Density

\(\sigma \)

Surface tension

\(x,\,y,\,z\)

Cartesian coordinates

p

Pressure

A

Area

U

Velocity

\(A_\mathrm{h}\)

Hamaker constant

\(u,\,v,\,w\)

Velocity components

We

Weber number

Kn

Knudsen number

\(\varvec{n}\)

Normal vector

f

Volumetric force

t

Time

\(\epsilon \)

Numerical threshold

\(\eta \)

Dynamic viscosity

\(\varphi \)

Angle

R

Radius

r

Radius coordinate

D

Diameter

\(\lambda \)

Mean free path

h, H

Distance

\(w_s\)

Resultant velocity

Oh

Ohnesorge number

Subscript

0

Initial value

a

Value on interface

L

Liquid phase

c

Critical value

r

Relative value

G

Gas phase

b

Ambient

Vdw

Van der Waals force

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Qian, J., Law, C.K.: Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 59 (1997)CrossRefGoogle Scholar
  2. 2.
    Pan, K.L., Chou, P.C., Tseng, Y.J.: Binary droplet collision at high Weber number. Phys. Rev. E 80(3), 036301 (2009)CrossRefGoogle Scholar
  3. 3.
    MacKay, G.D.M., Mason, S.G.: The gravity approach and coalescence of fluid drops at liquid interfaces. Can. J. Chem. Eng. 41(5), 203 (1963)CrossRefGoogle Scholar
  4. 4.
    Zhang, P., Law, C.K.: An analysis of head-on droplet collision with large deformation in gaseous medium. Phys. Fluids 23(4), 042102 (2011)CrossRefGoogle Scholar
  5. 5.
    Estrade, J.P., Carentz, H., Lavergne, G., Biscos, Y.: Experimental investigation of dynamic binary collision of ethanol droplets-a model for droplet coalescence and bouncing. Int. J. Heat Fluid Flow 20(5), 486 (1999)CrossRefGoogle Scholar
  6. 6.
    Nobari, M.R.H., Tryggvason, G.: Numerical simulations of three-dimensional drop collisions. AIAA J. 34(4), 750 (1996)CrossRefGoogle Scholar
  7. 7.
    Nikolopoulos, N., Nikas, K.S., Bergeles, G.: A numerical investigation of central binary collision of droplets. Comput. Fluids 38(6), 1191 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Nikolopoulos, N., Theodorakakos, A., Bergeles, G.: Off-centre binary collision of droplets: a numerical investigation. Int. J. Heat Mass Transf. 52(19), 4160 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Pan, Y., Suga, K.: Numerical simulation of binary liquid droplet collision. Phys. Fluids 17(8), 082105 (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Pan, K.L., Law, C.K., Zhou, B.: Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision. J. Appl. Phys. 103(6), 064901 (2008)CrossRefGoogle Scholar
  11. 11.
    Mason, L.R., Stevens, G.W., Harvie, D.J.E.: Multiscale volume of fluid modelling of droplet coalescence. In: Ninth International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, Melbourne, Australia (2012)Google Scholar
  12. 12.
    Murad, S., Law, C.K.: Molecular simulation of droplet collision in the presence of ambient gas. Mol. Phys. 96(1), 81 (1999)CrossRefGoogle Scholar
  13. 13.
    Eisenschmidt, K., Ertl, M., Gomaa, H., Kieffer-Roth, C., Meister, C., Rauschenberger, P., Reitzle, M., Schlottke, K., Weigand, B.: Direct numerical simulations for multiphase flows: an overview of the multiphase code FS3D. Appl. Math. Comput. 272, 508 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201 (1981)CrossRefzbMATHGoogle Scholar
  15. 15.
    Rider, W.J., Kothe, D.B.: Reconstructing volume tracking. J. Comput. Phys. 141(2), 112 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rieber, M.: Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen. Ph.D. thesis, University of Stuttgart (2004)Google Scholar
  17. 17.
    Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., Zanetti, G.: Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113(1), 134 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Boger, M., Schlottke, J., Munz, C.D., Weigand, B.: Reduction of parasitic currents in the DNS VOF code FS3D. In: 12th Workshop on Two-Phase Flow Predictions, Halle (Saale), Germany (2010)Google Scholar
  20. 20.
    Jiang, X., James, A.J.: Numerical simulation of the head-on collision of two equal-sized drops with van der Waals forces. J. Eng. Math. 59(1), 99 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Focke, C., Kuschel, M., Sommerfeld, M., Bothe, D.: Collision between high and low viscosity droplets: direct numerical simulations and experiments. Int. J. Multiphase Flow 56, 81 (2013)CrossRefGoogle Scholar
  22. 22.
    Hamrock, B.J., Schmid, S.R., Jacobson, B.O.: Fundamentals of Fluid Film Lubrication. Marcel Dekker Inc, New York (2004)CrossRefGoogle Scholar
  23. 23.
    Shukla, J.B., Kumar, S., Chandra, P.: Generalized Reynolds equation with slip at bearing surfaces: multiple-layer lubrication theory. Wear 60(2), 253 (1980)CrossRefGoogle Scholar
  24. 24.
    Shen, C.: Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows. Springer, Berlin (2005)CrossRefGoogle Scholar
  25. 25.
    Dongari, N., Agrawal, A., Agrawal, A.: Analytical solution of gaseous slip flow in long microchannels. Int. J. Heat Mass Transf. 50(17), 3411 (2007)CrossRefzbMATHGoogle Scholar
  26. 26.
    Schonberg, R.H.D.J.A., Rallison, J.M.: The lubrication force between two viscous drops. Phys. Fluids A 1(1) (1989)Google Scholar
  27. 27.
    Blazek, J.: Computational Fluid Dynamics: Principles and Applications. Elsevier Science, Oxford (2005)zbMATHGoogle Scholar
  28. 28.
    Wörner, M., Sabisch, W., Grötzbach, G., Cacuci, D.G.: Volume-averaged conservation equations for volume-of-fluid interface tracking. In: Proceedings of the 4th International Conference on Multiphase Flow, New Orleans, Louisiana, USA (2001)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Profile Area Thermo-Fluids & Interfaces and Department of MathematicsTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations