Skip to main content
Log in

Electrohydrodynamics of a liquid drop in AC electric fields

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The aim of this study is to gain a detailed understanding of the behavior of a liquid drop in AC electric fields at finite Reynolds number. A front-tracking/finite difference method, in conjunction with Taylor–Melcher leaky dielectric model, is used to solve the governing electrohydrodynamic equations. The evolution of the flow field and the drop deformation are studied for three representative fluid systems, corresponding to the three regions of the deformation–circulation map. It is shown that for the range of the physical parameters used here, the relaxation time during which the drop settles to its quasi-steady-state deformation is essentially the same as that predicted by the creeping flow solution. Furthermore, the mean (time-independent) deformation is well represented by its steady-state deformation in the corresponding DC field in a root-mean-square sense. The evolution of the flow field shows formation of closed vortices that cross the drop surface and move toward the ambient fluid or the drop, in line with the motion of the drop surface. The evolution of the kinetic energy of the flow field with time is investigated, and the correlations between the minimum and the maximum kinetic energy and the state of the drop deformation are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q., Suo, Z., Zhao, X.: Bursting drops in solid dielectrics caused by high voltages. Nat. Commun. 3, 1157 (2012)

    Article  Google Scholar 

  2. Eow, J.S., Ghadiri, M.: Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology. Chem. Eng. J. 85(2), 357–368 (2002)

    Article  Google Scholar 

  3. Kim, H., Luo, D., Link, D., Weitz, D.A., Marquez, M., Cheng, Z.: Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Appl. Phys. Lett. 91(13), 133106 (2007)

    Article  Google Scholar 

  4. Taylor, G.: Studies in electrohydrodynamics: I. the circulation produced in a drop by an electric field. Proc. R. Soc. A 291, 159–167 (1966)

    Article  Google Scholar 

  5. Smith, C., Melcher, J.: Electrohydrodynamically induced spatially periodic cellular Stokes-flow. Phys. Fluids 10, 2315–2322 (1967)

    Article  Google Scholar 

  6. Melcher, J.R., Taylor, G.I.: Electrohydrodynamics: a review of the role of interfacial shear stresses. Ann. Rev. Fluid Mech. 1, 111–147 (1969)

    Article  Google Scholar 

  7. Saville, D.A.: Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Ann. Rev. Fluid Mech. 29, 27–64 (1997)

    Article  MathSciNet  Google Scholar 

  8. Torza, S., Cox, R.G., Mason, S.G.: Electrohydrodynamic deformation and burst of liquid drops. Philos. Trans. R. Soc. A 269(1198), 295–319 (1971)

    Article  Google Scholar 

  9. Vizika, O., Saville, D.: The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields. J. Fluid Mech. 239, 1–21 (1992)

    Article  Google Scholar 

  10. Baygents, J., Rivette, N., Stone, H.: Electrohydrodynamic deformation and interaction of drop pairs. J. Fluid Mech. 368, 359–375 (1998)

    Article  MATH  Google Scholar 

  11. Moriya, S., Adachi, K., Kotaka, T.: Deformation of droplets suspended in viscous media in an electric field. 1. Rate of deformation. Langmuir 2(2), 155–160 (1986)

    Article  Google Scholar 

  12. Moriya, S., Adachi, K., Kotaka, T.: Deformation of droplets suspended in viscous media in an electric field. 2. Burst behavior. Langmuir 2(2), 161–165 (1986)

    Article  Google Scholar 

  13. Nishiwaki, T., Adachi, K., Kotaka, T.: Deformation of viscous droplets in an electric field: poly (propylene oxide)/poly (dimethylsiloxane) systems. Langmuir 4(1), 170–175 (1988)

    Article  Google Scholar 

  14. Limat, L., Stone, H.A., Viovy, J.L.: Electrohydrodynamic stability of a liquid column under cross fields: application to continuous flow electrophoresis. Phys. Fluids 10(10), 2439–2450 (1998)

    Article  Google Scholar 

  15. Taylor, G.: Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A Math. Eng. Sci. 280(1382), 383–397 (1964)

    Article  MATH  Google Scholar 

  16. Allan, R., Mason, S.: Particle behaviour in shear and electric fields. I. Deformation and burst of fluid drops. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 267(1328), 45–61 (1962)

    Article  Google Scholar 

  17. Sozou, C.: Electrohydrodynamics of a liquid drop: the time-dependent problem. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 331(1585), 263–272 (1972)

    Article  MATH  Google Scholar 

  18. Thaokar, R.: Dielectrophoresis and deformation of a liquid drop in a non-uniform, axisymmetric AC electric field. Eur. Phys. J. E Soft Matter Biol. Phys. 35(8), 1–15 (2012)

    Article  Google Scholar 

  19. Behjatian, A., Esmaeeli, A.: Flow patterns and deformation modes of coaxial liquid columns in transverse electric fields. Eur. Phys. J. E Soft Matter 36(10), 1 (2013)

    Article  Google Scholar 

  20. Behjatian, A., Esmaeeli, A.: Transient electrohydrodynamics of a liquid jet: evolution of the flow field. Fluid Dyn. Mater. Process. 10(3), 29–317 (2014)

    Google Scholar 

  21. Behjatian, A., Esmaeeli, A.: Equilibrium shape and hysteresis behavior of liquid jets in transverse electric fields. J. Electrostat. 75, 5–13 (2015)

    Article  MATH  Google Scholar 

  22. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708–759 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Halim, M.A., Esmaeeli, A.: Computational studies on the transient electrohydrodynamics of a liquid drop. FDMP Fluid Dyn. Mater. Process. 9(4), 435–460 (2013)

    Google Scholar 

  24. Esmaeeli, A.: Dielectrophoretic-and electrohydrodynamic-driven translational motion of a liquid column in transverse electric fields. Phys. Fluids 28(7), 073306 (2016)

    Article  Google Scholar 

  25. Feng, J.Q.: Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 455(1986), 2245–2269 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lanauze, J.A., Walker, L.M., Khair, A.S.: The influence of inertia and charge relaxation on electrohydrodynamic drop deformation. Phys. Fluids 25(11), 484 (2013)

    Article  Google Scholar 

  27. Das, D., Saintillan, D.: A nonlinear small-deformation theory for transient droplet electrohydrodynamics. J. Fluid Mech. 810, 225–253 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Esmaeeli, A., Halim, M.A.: Electrohydrodynamics of a liquid jet in transverse AC electric fields. Int. J. Multiphase Flow 7, 1037 (2018)

    Google Scholar 

  29. Rhodes, P.H., Snyder, R.S., Roberts, G.O.: Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis. J. Colloid Interface Sci. 129(1), 78–90 (1989)

    Article  Google Scholar 

  30. Reddy, M.N., Esmaeeli, A.: The EHD-driven fluid flow and deformation of a liquid jet by a transverse electric field. Int. J. Multiphase Flow 35, 1051–1065 (2009)

    Article  Google Scholar 

  31. Esmaeeli, A., Sharifi, P.: The transient dynamics of a liquid column in a uniform transverse electric field of small strength. J. Electrostat. 69(6), 504–511 (2011)

    Article  Google Scholar 

  32. Behjatian, A., Esmaeeli, A.: Electrohydrodynamics of a liquid column under a transverse electric field in confined domains. Int. J. Multiphase Flow 48, 71–81 (2013)

    Article  Google Scholar 

  33. Kaji, N., Mori, Y., Tochitani, Y.: Heat transfer enhancement due to electrically induced resonant oscillation of drops. J. Heat Transfer 107(4), 788–793 (1985)

    Article  Google Scholar 

  34. Ward, T., Homsy, G.: Chaotic streamlines in a translating drop with a uniform electric field. J. Fluid Mech. 547, 215–230 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Christov, C., Homsy, G.: Enhancement of transport from drops by steady and modulated electric fields. Phys. Fluids 21(8), 083102 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Esmaeeli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeeli, A., Halim, M.A. Electrohydrodynamics of a liquid drop in AC electric fields. Acta Mech 229, 3943–3962 (2018). https://doi.org/10.1007/s00707-018-2211-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2211-6

Navigation