Slip flow in a microchannel driven by rhythmic wall contractions


We adopt a recent minimal mathematical model of a pumping mechanism in entomological respiratory systems and consider the model’s behavior in the slip flow regime, which occurs naturally in the distalmost portions of insect respiratory systems. In the model, a phase lag in the timing of two neighboring wall contractions in a rectangular microchannel produces a unidirectional flow. The current study investigates the results of incorporating slip effects into the model by introducing first-order accurate slip boundary conditions to investigate the method’s performance for slip flows at the microscale in the slip flow regime. The two-dimensional Navier–Stokes equations are solved with microscale and lubrication theory assumptions, and the tangential momentum accommodation coefficient is assumed to be one, so that the slip flow parameter \(\beta \) is identically equivalent to the Knudsen number, Kn. The variations of the axial velocity, pressure gradient, and total pressure along the channel are determined for three representative Knudsen numbers that span the continuum and slip flow regimes. It was observed that for the shear-driven flow investigated here, the overall effect of increasing the amount of slip is to decrease the volumetric flow rate and that the phase lag for producing maximum flow is in the range of \(63^\circ \)\(67^\circ \), while in the no-slip case the optimum phase lag is approximately \(63^\circ \). The results suggest that shear-driven flows at the microscale in the slip flow regime may see a reduction in flow rate in contrast to pressure-driven microscale gas flows in the slip flow regime.

This is a preview of subscription content, log in to check access.


  1. 1.

    Socha, J.J., Lee, W.K., Harrison, J.F., Waters, J.S., Fezzaa, K., Westneat, M.W.: Correlated patterns of tracheal compression and convective gas exchange in a carabid beetle. J. Exp. Biol. 211, 3409–3420 (2008)

    Article  Google Scholar 

  2. 2.

    Uchida, A., Aoki, H.: Unsteady flows in a semi-infinite contracting or expanding pipe. J. Fluid Mech. 82, 371–387 (1977)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Secomb, T.W.: Flow in a channel with pulsating walls. J. Fluid Mech. 88, 273–288 (1978)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Zhang, T., Jia, L., Wang, Z.: Validation of Navier–Stokes equations for slip flow analysis within transition region. Int. J. Heat Mass Transf. 51, 6323–6327 (2008)

    Article  Google Scholar 

  5. 5.

    Arkilic, E.B., Schmidt, M.A.: Gaseous slip flow in long microchannels. J. Microelectromech. Syst. 6(2), 167–178 (1997)

    Article  Google Scholar 

  6. 6.

    Agrawal, A.: A comprehensive review on gas flow in microchannels. Int. J. Micro-Nano Scale Transp. 2(1), 1–40 (2011)

    Article  Google Scholar 

  7. 7.

    Aboelkassem, Y., Staples, A.E.: Flow transport in a microchannel induced by moving wall contractions: a novel micropumping mechanism. Acta Mech. 223, 463–480 (2012)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Meijing, L., Brasseur, J.G.: Non-steady peristaltic transport in finite-length tubes. J. Fluid Mech. 248, 129–151 (1993)

    Article  Google Scholar 

  9. 9.

    Aboelkassem, Y., Staples, A.E., Socha, J.J.: Microscale flow pumping inspired by rhythmic tracheal compressions in insects. In: Proc. ASME Press. Vessels Piping Conf., PVP2011, 57061 (2011)

  10. 10.

    Singh, P., Radhakrishnan, V., Narayan, K.A.: Squeezing flow between parallel plates. Ingenious Arch. 60, 274–281 (1990)

    Article  Google Scholar 

  11. 11.

    Kwang-Hua Chu, A.: Transport control within a microtube. Phys. Rev. E 70, 061902 (2004)

    Article  Google Scholar 

  12. 12.

    Ralph, M.E., Pedley, T.J.: Flow in a channel with moving indentation. J. Fluid Mech. 190, 87–112 (1988)

    Article  Google Scholar 

  13. 13.

    Ramachandra Rao, A., Mishra, M.: Nonlinear and curvature effects on peristaltic flow of a viscous fluid in an asymmetric channel. Acta Mech. 168, 35–59 (2004)

    Article  Google Scholar 

  14. 14.

    Macagno, E.O., Christensen, J.: Fluid mechanics of the duodenum. Ann. Rev. Fluid Mech. 12, 139–158 (1980)

    Article  Google Scholar 

  15. 15.

    Macagno, E.O., Christensen, J., Lee, L.: Modeling the effect of wall movement on absorption in the intestine. Am. J. Physiol. 243, G541–G550 (1982)

    Google Scholar 

  16. 16.

    Dongari, N., Agarwal, A.: Analytical solution of gaseous slip flow in long microchannels. Int. J. Heat Mass Transf. 50, 3411–3421 (2007)

    Article  Google Scholar 

  17. 17.

    Ebaid, A.: Effects of magnetic field and wall slip conditions on the peristaltic transport of a newtonian fluid in an asymmetric microchannel. Phys. Lett. A. 372, 4493–4499 (2008)

    Article  Google Scholar 

  18. 18.

    Westneat, M.W., Betz, O., Blob, R.W., Fezzaa, K., Cooper, W.J., Lee, W.K.: Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299, 558–560 (2003)

    Article  Google Scholar 

  19. 19.

    Aboelkassem, Y., Staples, A.E.: Selective pumping in a network: insect-style microscale flow transport. Bioinspir. Biomim. 8, 026004 (2013)

    Article  Google Scholar 

  20. 20.

    Aboelkassem, Y., Staples, A.E.: Bioinspired pumping model for flow in a microtube with rhythmic wall contractions. J. Fluids Struct. 42, 187–204 (2013)

    Article  Google Scholar 

  21. 21.

    San, O., Staples, A.E.: Dynamics of pulsatile flows through elastic microtubes. Int. J. Appl. Mech. 04, 1250006 (2012)

    Article  Google Scholar 

  22. 22.

    Skalak, F.M., Wang, C.Y.: On the unsteady squeezing of a viscous fluid from a tube. J. Aust. Math. Soc. (Ser. B) 21, 65–74 (1979)

    Article  Google Scholar 

  23. 23.

    Shapiro, A.H., Jaffrin, M.Y., Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid. Mech. 37, 799–825 (1969)

    Article  Google Scholar 

  24. 24.

    Tretheway, D.C., Liu, X., Meinhart, C.D.: Analysis of slip flow in microchannels. In: Proc. 11th Inter. Symp. Appl. Laser Tech. to Fluid Mech., Lisbon, pp. 8–11 (2002)

  25. 25.

    Davey, A.: On the stability of flow in an elliptic pipe which is nearly circular. J. Fluid Mech. 87(2), 233–241 (1978)

    Article  Google Scholar 

  26. 26.

    Prusa, V.: On the influence of boundary condition on stability of Hagen–Poiseuille flow. Comput. Math. Appl. 57(5), 763–771 (2009)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Aboelkassem, Y., Staples, A.E.: Stokeslets-meshfree computations and theory for flow in a collapsible microchannel. Theor. Comput. Fluid Dyn. 27(5), 681–700 (2013)

    Article  Google Scholar 

  28. 28.

    Aboelkassem, Y., Staples, A.E.: A three-dimensional model for flow pumping in a microchannel inspired by insect respiration. Acta Mech. 225(2), 493–507 (2014)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Huh, D., Kim, H.J., Fraser, J.P., Shea, D.E., Khan, M., Bahinski, A., Hamilton, G.A., Ingber, D.E.: Microfabrication of human organs-on-chips. Nat. Am. Inc. 8(11), 2135–2157 (2013)

    Google Scholar 

  30. 30.

    Dittrich, P.S., Manz, A.: Lab-on-a-chip: microfluidics in drug discovery. Nature 5, 210–218 (2006)

    Article  Google Scholar 

  31. 31.

    Grinias, J.P., Kennedy, R.T.: Advances in and prospects of microchip liquid chromatography. Trends Analyt. Chem. 81, 110–117 (2016)

    Article  Google Scholar 

  32. 32.

    Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A., Quake, S.R.: Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113–116 (2000)

    Article  Google Scholar 

  33. 33.

    Thorsen, T., Maerkl, S.J., Quake, S.R.: Microfluidic large-scale integration. Science 298(5593), 580–584 (2002)

    Article  Google Scholar 

  34. 34.

    Agrawal, A., Prabhu, S.V.: Survey on measurement of tangential momentum accommodation coefficient. J. Vac. Sci. Technol. A 26(4), 634–645 (2008)

    Article  Google Scholar 

  35. 35.

    Socha, J.J., Forster, T.D., Greenlee, K.J.: Issues of convection in insect respiration: insights from synchrotron X-ray imaging and beyond. Resp. Physiol. Neurobiol. 173, S65–S73 (2010)

    Article  Google Scholar 

  36. 36.

    Lauga, E., Stone, H.A.: Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 55–77 (2003)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to thank the National Science Foundation (Grant No. 1437387) for providing the funding support for this study and Dr. Yasser Aboelkassem for providing valuable insights.

Author information



Corresponding author

Correspondence to Krishnashis Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, K., Staples, A. Slip flow in a microchannel driven by rhythmic wall contractions. Acta Mech 229, 4113–4129 (2018).

Download citation