Skip to main content
Log in

Dynamic analysis of gear system under fractional-order PID control with the feedback of meshing error change rate

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the fractional-order proportional-integral-derivative (PID) control of the feedback of change rate of gear meshing error, the nonlinear dynamics problem of a spur gear pair is investigated. A model is established including backlash, time-varying stiffness, internal and external excitations and other factors, where the fractional-order PID control terms are also considered. The periodic solution is obtained based on the incremental harmonic balance method, and it is verified by the numerical solution. The effects of the coefficients and the orders of the fractional-order PID controller are analyzed in detail. The control performances of fractional-order PID controller and integer-order PID controller are compared. The results show that the fractional-order PID controller has good control performance for the gear meshing system. By changing the parameters of the controller, the resonance amplitude of the gear meshing system can be suppressed, and the resonance frequency of the gear meshing system can also be adjusted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan, H.B.: Influence of tooth profile modification on vibration and noise of automobile transmission gear tooth surface. J. Mech. Transm. 40(11), 176–180 (2016)

    Google Scholar 

  2. Zhou, J.X., Sun, W.L., Cui, Q.W.: Research on vibration and noise influence factors of single stage herringbone gear reducer. J. Vib. Shock 34(5), 213–219 (2015)

    Google Scholar 

  3. Lu, J.W., Shen, B., Qian, L.J.: An analysis on the abnormal noise of gearbox based on gear nonlinear dynamics. Automot. Eng. 29(6), 533–536 (2007)

    Google Scholar 

  4. Shen, Y.J., Yang, S.P., Liu, X.D.: Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method. Int. J. Mech. Sci. 48(11), 1256–1263 (2006)

    Article  MATH  Google Scholar 

  5. Jiang, Y., Zhu, H., Li, Z., et al.: The nonlinear dynamics response of cracked gear system in a coal cutter taking environmental multi-frequency excitation forces into consideration. Nonlinear Dyn. 84(1), 203–222 (2016)

    Article  Google Scholar 

  6. Sakamoto, M., Sasaki, K., Kobori, T.: Active structural response control system. Mechatronics 2(5), 503–519 (1992)

    Article  Google Scholar 

  7. Wu, J.C., Yang, J.N.: Modified sliding mode control for wind-excited benchmark problem. J. Eng. Mech. 130(4), 499–504 (2004)

    Article  Google Scholar 

  8. Zhou, L.W., Chen, G.P.: Intelligent vibration control for high-speed spinning beam based on fuzzy self-tuning PID controller. Shock Vib. 8, 1–8 (2015)

    Google Scholar 

  9. Huang, Y., E, J.Q., Guo, G., Tang, M.Y., Hu, W.: Active control of slewing vibration in an ultra-long flexible boom. J. Vib. Shock 35(06), 137–140 (2016)

    Google Scholar 

  10. Ma, X.J., Lu, Y., Wang, F.J.: Active structural acoustic control of helicopter interior multifrequency noise using input–output-based hybrid control. J. Sound Vib. 405, 187–207 (2017)

    Article  Google Scholar 

  11. Mao, B.Q., Lin, L., Cao, T.J.: Study on reducing vibration and noise of the gear transmissions by using damped ring. Mach. Des. Res. 21(1), 47–49 (2005)

    Google Scholar 

  12. Pasco, Y., Robin, O., Bélanger, P., et al.: Multi-input multi-output feedforward control of multi-harmonic gearbox vibrations using parallel adaptive notch filters in the principal component space. J. Sound Vib. 330(22), 5230–5244 (2012)

    Article  Google Scholar 

  13. Chen, M.H., Brennan, M.J.: Active control of gear vibration using specially configured sensors and actuators. Smart Mater. Struct. 9(3), 342–350 (2000)

    Article  Google Scholar 

  14. Saghafi, A., Farshidianfar, A.: Bifurcation and chaos control in a gear transmission system. Modares Mech. Eng. 14(14), 61–68 (2015)

    Google Scholar 

  15. Zheng, J.M., Zhao, S.D., Wei, S.G.: Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press. Control Eng. Pract. 17(12), 1398–1404 (2009)

    Article  Google Scholar 

  16. Thenozhi, S., Yu, W.: Stability analysis of active vibration control of building structures using PD/PID control. Eng. Struct. 81, 208–218 (2014)

    Article  Google Scholar 

  17. Shen, Y.J., Yang, S.P., Xing, H.J., et al.: Primary resonance of duffing oscillator with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3092–3100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, Y.J., Wen, S.F., Li, X.H., et al.: Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method. Nonlinear Dyn. 85(3), 1457–1467 (2016)

    Article  MathSciNet  Google Scholar 

  19. Chen, L.C., Zhu, W.Q.: Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations. Int. J. Non-Linear Mech. 46(10), 1324–1329 (2011)

    Article  Google Scholar 

  20. Yang, S.P., Shen, Y.J.: Recent advances in dynamics and control of hysteretic nonlinear systems. Chaos Solitons Fractals 40(4), 1808–1822 (2009)

    Article  Google Scholar 

  21. Podlubny, I.: Fractional-order systems and \(\text{ PI }^{\uplambda }\text{ D }^{\upmu }\)-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  Google Scholar 

  22. Shen, Y.J., Wei, P., Yang, S.P.: Primary resonance of fractional-order van der Pol oscillator. Nonlinear Dyn. 77(4), 1629–1642 (2014)

    Article  MathSciNet  Google Scholar 

  23. Niu, J.C., Shen, Y.J., Yang, S.P., et al.: Analysis of Duffing oscillator with time-delayed fractional-order PID controller. Int. J. Non-Linear Mech. 92, 66–75 (2017)

    Article  Google Scholar 

  24. Saidi, B., Amairi, M., Najar, S., et al.: Bode shaping-based design methods of a fractional order PID controller for uncertain systems. Nonlinear Dyn. 80(4), 1817–1838 (2014)

    Article  MathSciNet  Google Scholar 

  25. Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21(1), 69–81 (2011)

    Article  MATH  Google Scholar 

  26. Li, Y.N., Zhang, F., Wang, L., Ding, Q.Z.: Active vibration control of gear meshing based on online secondary path identification algorithm. J. Vib. Shock 32(16), 7–12 (2013)

    Google Scholar 

  27. Li, Y.N., Zhang, F., Ding, Q.Z., Wang, L.: Active control method and experimental research of gear meshing vibration. J. Vib. Eng. 27(02), 215–221 (2014)

    Google Scholar 

  28. Shen, Y.J., YANG, S.P., Pan, C.Z., et al.: Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash. J. Low Freq. Noise Vib. Active Control 23(3), 178–187 (2004)

    Google Scholar 

  29. Lau, S.L., ZHANG, W.S.: Nonlinear vibrations of piecewise-linear systems by incremental harmonic balance method ASME. J. Appl. Mech. 59(1), 153–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, Y.J., Yang, S.P., Xing, H.J., et al.: Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives. Int. J. Non-Linear Mech. 47(9), 975–983 (2012)

    Article  Google Scholar 

  31. Chen, L.C., Zhao, T.L., Li, W., Zhao, J.: Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order \(\text{ PI }^{\uplambda }\text{ D }^{\upmu }\) feedback controller. Nonlinear Dyn. 83(1–2), 529–539 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kahraman, A., Singh, R.: Non-linear dynamics of a spur gear pair. J. Sound Vib. 142(1), 49–75 (1990)

    Article  Google Scholar 

  33. Theodossiades, S., Natsiavas, S., Goudas, I.: Dynamic analysis of piecewise linear oscillators with time periodic coefficients. Int. J. Non-Linear Mech. 35(1), 53–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Petras, I.: Fractional-Order Nonlinear Systems. Higher Education Press, Beijing (2011)

    Book  MATH  Google Scholar 

  35. Wang, S.P., Su, X.W.: Study on the experiment and nonlinear dynamics mechanism of gear fault evolution. J. Mech. Transm. 39(2), 19–24 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangchuan Niu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Niu, J. & Li, X. Dynamic analysis of gear system under fractional-order PID control with the feedback of meshing error change rate. Acta Mech 229, 3833–3851 (2018). https://doi.org/10.1007/s00707-018-2194-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2194-3

Keywords

Navigation