Skip to main content
Log in

New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents an analytical approach to investigate the nonlinear dynamic response and vibration of functionally graded multilayer nanocomposite plates reinforced with a low content of graphene platelets (GPLs) using first-order shear deformation theory and a stress function with full motion equations (not using Volmir’s assumptions). The weight fraction of GPL nanofillers is assumed to be constant in each individual GPL-reinforced composite (GPLRC). The modified Halpin–Tsai micromechanics model that takes into account the GPL geometry effect is adopted to estimate the effective Young’s modulus of the GPLRC layers. The plate is assumed to rest on a viscoelastic Pasternak medium and to be subjected to dynamic mechanical load in a thermal environment. Numerical results for the nonlinear dynamic response and vibration of functionally graded (FG) multilayer GPLRC plates are obtained by the Runge–Kutta method. The results show the influences of the GPL distribution pattern, weight fraction, geometry, foundation models, mechanical and temperature loads on the nonlinear dynamic response and vibration, natural frequencies and frequency–amplitude curves of FG multilayer GPLRC plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(E_\mathrm{GPL} , E_\mathrm{m} \) :

The Young’s moduli of the GPL and matrix, respectively

\(a_\mathrm{GPL} ,b_\mathrm{GPL} ,t_\mathrm{GPL}\) :

The length, width and thickness of GPL nanofillers, respectively

\(v_\mathrm{GPL} ,v_\mathrm{m} \) :

The Poisson’s ratios with the subscripts “GPL” and “m” referring to the GPL and matrix, respectively

\(\alpha _\mathrm{GPL} ,\alpha _\mathrm{m} \) :

The thermal expansion coefficients with the subscripts “GPL” and “m” referring to the GPL and matrix, respectively

References

  1. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  2. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  3. Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Article  Google Scholar 

  4. Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008)

    Article  Google Scholar 

  5. Bonaccorso, F., et al.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501

    Article  Google Scholar 

  6. Tiwari, A., Syväjärvi, M.: Graphene Materials: Fundamentals and Emerging Applications. Wiley, New York (2015)

    Book  Google Scholar 

  7. Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R Rep. 74, 281–350 (2013)

    Article  Google Scholar 

  8. Zhou, X., Li, D., Wan, S., Cheng, Q., Ji, B.: In silicon testing of the mechanical properties of graphene oxide-silk nanocomposites. Acta Mech. (2017). https://doi.org/10.1007/s00707-017-2017-y

  9. Lanza, M., Wang, Y., Sun, H., Tong, Y., Duan, H.: Morphology and performance of graphene layers on as-grown and transferred substrates. Acta Mech. 225, 1061–1073 (2014)

    Article  MATH  Google Scholar 

  10. Song, M., Yang, J., Kitipornchai, S., Zhud, W.: Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates. Int. J. Mech. Sci. 131–132, 345–355 (2017)

    Article  Google Scholar 

  11. Yang, J., Wu, H., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)

    Article  Google Scholar 

  12. Wu, H., Kitipornchai, S., Yang, J.: Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater. Des. 132, 430–441 (2017)

    Article  Google Scholar 

  13. Song, M., Yang, J., Kitipornchai, S.: Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Composites Part B 134, 106–113 (2018)

    Article  Google Scholar 

  14. Shen, H.S., Xiang, Y., Lin, F., Hui, D.: Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Composites Part B 119, 67–78 (2017)

    Article  Google Scholar 

  15. Wu, H., Yang, J., Kitipornchai, S.: Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos. Struct. 162, 244–254 (2017)

    Article  Google Scholar 

  16. Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Article  Google Scholar 

  17. Shen, H.S., Xiang, Y., Fan, Y.: Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical panels under axial compression in thermal environments. Int. J. Mech. Sci. 135, 398–409 (2018)

    Article  Google Scholar 

  18. Yang, B., Mei, J., Chen, D., Yua, F., Yang, J.: 3D thermo-mechanical solution of transversely isotropic and functionally graded graphene reinforced elliptical plates. Compos. Struct. 184, 1040–1048 (2018)

    Article  Google Scholar 

  19. Shen, H.S., Xiang, Y., Fan, Y., Hui, D.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments. Composites Part B 136, 177–186 (2018)

    Article  Google Scholar 

  20. Shen, H.S., Xiang, Y.: Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments. Thin Walled Struct. 124, 151–160 (2018)

    Article  Google Scholar 

  21. Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017)

    Article  Google Scholar 

  22. Shen, H.S., Xiang, Y., Lin, F.: Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments. Compos. Struct. 170, 80–90 (2017)

    Article  Google Scholar 

  23. García-Macías, E., Rodríguez-Tembleque, L., Sáez, A.: Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Compos. Struct. 186, 123–138 (2018)

    Article  Google Scholar 

  24. Shen, H.S., Xiang, Y., Lin, F.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Comput. Methods Appl. Mech. Eng. 319, 175–193 (2017)

    Article  MathSciNet  Google Scholar 

  25. Shen, H.S., Lin, F., Xiang, Y.: Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations. Eng. Struct. 140, 89–97 (2017)

    Article  Google Scholar 

  26. Gholami, R., Ansari, R.: Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates. Compos. Struct. 180, 760–771 (2017)

    Article  Google Scholar 

  27. Sun, J., Zhao, J., Chen, M., Zhou, Y., Ni, X., Li, Z., Gong, F.: Multilayer graphene reinforced functionally graded tungsten carbide nano-composites. Mater. Des. 134, 171–180 (2017)

    Article  Google Scholar 

  28. Zhao, Z., Feng, C., Wang, Y., Yang, J.: Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs). Compos. Struct. 180, 799–808 (2017)

    Article  Google Scholar 

  29. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H., Nouri, A.: Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. Int. J. Mech. Sci. 130, 534–545 (2017)

    Article  Google Scholar 

  30. Kolahchi, R.: Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium. Compos. Struct. 150, 255–265 (2016)

    Article  Google Scholar 

  31. Kolahchi, R.: A comparative study on the bending, vibration and buckling of viscoelastic sandwich nanoplates based on different nonlocal theories using DC, HDQ and DQ methods. Aerosp. Sci. Technol. 66, 235–248 (2017)

    Article  Google Scholar 

  32. Kolahchi, R., Hosseini, H., Esmailpour, M.: Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories. Compos. Struct. 157, 174–186 (2016)

    Article  Google Scholar 

  33. Kolahchia, R., Zareib, M.S., Hajmohammadc, M.H., Oskoueic, A.N.: Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods. Thin Walled Struct. 113, 162–169 (2017)

    Article  Google Scholar 

  34. Kolahchi, R., Keshtegar, B., Fakha, M.H.: Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm. J. Sandw. Struct. Mater. (2017). https://doi.org/10.1177/1099636217731071

    Google Scholar 

  35. Duc, N.D., Bich, D.H., Cong, P.H.: Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations. J. Therm. Stress. 39(3), 278–297 (2016)

    Article  Google Scholar 

  36. Duc, N.D., Cong, P.H., Tuan, N.D., Phuong, T., Anh, V.M., Quang, V.D.: Nonlinear vibration and dynamic response of imperfect eccentrically stiffened shear deformable sandwich plate with functionally graded material in thermal environment. J. Sandw. Struct. Mater. 18(4), 445–473 (2016)

    Article  Google Scholar 

  37. Duc, N.D., Cong, P.H.: Nonlinear vibration of thick FGM plates on elastic foundation subjected to thermal and mechanical loads using the first order shear deformation plate theory. Cogent Eng. 2, 1–17 (2015)

    Article  Google Scholar 

  38. Cong, P.H., Anh, V.M., Duc, N.D.: Nonlinear dynamic response of eccentrically stiffened FGM plate using Reddy’s TSDT in thermal environment. J. Therm. Stress. 40(6), 704–732 (2017)

    Article  Google Scholar 

  39. Duc, N.D., Cong, P.H., Quang, V.D.: Nonlinear dynamic and vibration analysis of piezoelectric eccentrically stiffened FGM plates in thermal environment. Int. J. Mech. Sci. 115–116, 711–722 (2016)

    Article  Google Scholar 

  40. Duc, N.D., Cong, P.H., Tuan, N.D., Phuong, T., Thanh, N.V.: Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations. Thin Walled Struct. 115, 300–310 (2017)

    Article  Google Scholar 

  41. Duc, N.D.: Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells. Vietnam National University Press, Hanoi (2014)

    Google Scholar 

  42. Guzmán de Villoria, R., Miravete, A.: Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 55(9), 3025–3031 (2007)

    Article  Google Scholar 

  43. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  44. Arani, A.G., Shiravand, A., Rahi, M., Kolahchi, R.: Nonlocal vibration of coupled DLGS systems embedded on Visco-Pasternak foundation. Phys. B Condens. Matter. 407, 4123–4131 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Dinh Duc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, P.H., Duc, N.D. New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment. Acta Mech 229, 3651–3670 (2018). https://doi.org/10.1007/s00707-018-2178-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2178-3

Navigation