Advertisement

Acta Mechanica

, Volume 229, Issue 7, pp 2967–2977 | Cite as

Effects of the imperfect interface and viscoelastic loading on vibration characteristics of a quartz crystal microbalance

  • Chunlong Gu
  • Peng Li
  • Feng Jin
  • Gongfa Chen
  • Liansheng Ma
Original Paper
  • 98 Downloads

Abstract

The interfacial adhesion and viscoelasticity of an additional mass layer have a significant influence on the resonant frequency of a quartz crystal microbalance (QCM), especially when the attached mass layer is thick. In this study, a detailed quantitative investigation is conducted on the influence of the interface parameter and viscosity coefficient on the resonant frequency and admittance of a QCM. The obtained explicit expression of free vibration of the QCM can be numerically solved using Muller’s method. The results obtained in this study show that the viscoelasticity of the mass layer and its bonding characteristics significantly affect the performances of the QCM, such as the resonance frequency, displacement, and stress distributions, and the peak and bandwidth of admittance. The non-proportional relation between the resonance frequency and thickness of the mass layer becomes obvious when the thickness of the mass layer is larger than 2% that of the quartz plate. Meanwhile, the error between the exact solution and Sauerbrey’s solution is enlarged as the interface parameter increases or the viscosity coefficient decreases. The proposed method will be more precise in solving the resonant frequency than Sauerbrey’s equation does and able to provide a guidance for determining the viscosity of an attached mass layer. The novel points in the article are as follows: (i) The effects of the imperfect interface and viscosity on the resonance frequency of a QCM at different layer thicknesses are investigated. (ii) The difference between effects of the imperfect interface and viscosity on the characteristics of the admittance is discussed in detail.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Liu, N., Yang, J.S., Chen, W.Q.: Effect of a mass layer with gradually varying thickness on a quartz crystal microbalance. IEEE Sens. J. 11(8), 1635–1639 (2011)CrossRefGoogle Scholar
  2. 2.
    Sauerbrey, G.Z.: Use of quartz vibrator for weighing thin films on a microbalance. Z. Phys. 155(2), 206–222 (1959). (in German)CrossRefGoogle Scholar
  3. 3.
    Steen, C., Boersma, F., Ballegooyen, E.C.: The influence of mass loading outside the electrode area on the resonant frequencies of a quartz-crystal microbalance. J. Appl. Phys. 48(8), 3201–3205 (1977)CrossRefGoogle Scholar
  4. 4.
    Kong, Y.P., Liu, J.X., He, H.J., Yang, J.S.: Effects of mass layer dimension on a finite quartz crystal microbalance. Acta Mech. 222(1–2), 103–113 (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Josse, F., Lee, Y., Martin, S.J., Cernosek, R.W.: Analysis of the radial dependence of mass sensitivity for modified-electrode quartz crystal resonators. Anal. Chem. 70(2), 237–247 (1998)CrossRefGoogle Scholar
  6. 6.
    Lu, F., Lee, H.P., Lim, S.P.: Quartz crystal microbalance with rigid mass partially attached on electrode surfaces. Sens. Actuators A 112(2–3), 203–210 (2004)CrossRefGoogle Scholar
  7. 7.
    Li, Q., Gu, Y., Wang, N.F.: Free vibration analysis of a new polymer quartz piezoelectric crystal sensor applied to identify chinese liquors. Int. J. Appl. Mech. 9(1), 1750015 (2017)CrossRefGoogle Scholar
  8. 8.
    Hempel, U., Lucklum, R., Hauptmann, P.R., EerNisse, E.P., Puccio, D., Diaz, R.F.: Quartz crystal resonator sensors under lateral field excitation-a theoretical and experimental analysis. Meas. Sci. Technol. 19(5), 055201 (2008)CrossRefGoogle Scholar
  9. 9.
    Lucklum, R., Hauptmann, P.: Determination of polymer shear modulus with quartz crystal resonators. Faraday Discuss. 107, 123–140 (1997)CrossRefGoogle Scholar
  10. 10.
    Marx, K.A.: Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4(5), 1099–1120 (2003)CrossRefGoogle Scholar
  11. 11.
    Kanazawa, K.K., Gordon, J.G.: Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 57(8), 1770–1771 (1985)CrossRefGoogle Scholar
  12. 12.
    Kanazawa, K.K.: Mechanical behaviour of films on the quartz microbalance. Faraday Discuss. 107, 77–90 (1997)CrossRefGoogle Scholar
  13. 13.
    Sun, J.B., Du, J.K., Yang, J.S., Wang, J.: Shear-horizontal waves in a rotated Y-cut quartz plate in contact with a viscous fluid. Ultrasonics 52(1), 133–137 (2012)CrossRefGoogle Scholar
  14. 14.
    Arnau, A., Jimenez, Y., Sogorb, T.: An extended Butterworth–Van Dyke model for quartz crystal microbalance applications in viscoelastic fluid media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(5), 1367–1382 (2001)CrossRefGoogle Scholar
  15. 15.
    Suh, Y.K., Kim, B.C., Kim, Y.H.: Determination of viscoelastic property in polyethylene crystallization using a quartz crystal resonator. Sensors 9(12), 9544–9558 (2009)CrossRefGoogle Scholar
  16. 16.
    Martin, S.J., Granstaff, V.E., Frye, G.C.: Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63(20), 2272–2281 (1991)CrossRefGoogle Scholar
  17. 17.
    Vig, J.R., Ballato, A.: Comments on the effects of nonuniform mass loading on a quartz crystal microbalance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1123–1124 (1998)CrossRefGoogle Scholar
  18. 18.
    Chen, Y.Y., Du, J.K., Wang, J., Yang, J.S.: Shear-horizontal waves in a rotated Y-cut quartz plate with an imperfectly bonded mass layer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(3), 616–622 (2011)CrossRefGoogle Scholar
  19. 19.
    Li, P., Jin, F.: Effect of an imperfect interface in a quartz crystal microbalance for detecting the properties of an additional porous layer. J. Appl. Phys. 115(5), 054502 (2014)CrossRefGoogle Scholar
  20. 20.
    Liu, B., Jiang, Q., Yang, J.S.: Frequency shifts in a quartz plate piezoelectric resonator in contact with a viscous fluid under a separated electrode. Int. J. Appl. Electrom. 35(3), 177–187 (2011)Google Scholar
  21. 21.
    Lu, F., Lee, H.P., Lim, S.P.: Mechanical description of interfacial slips for quartz crystal microbalances with viscoelastic liquid loading. Smart Mater. Struct. 12(6), 881–888 (2003)CrossRefGoogle Scholar
  22. 22.
    Nwankwo, E., Durning, C.J.: Impedance analysis of thickness-shear mode quartz crystal resonators in contact with linear viscoelastic media. Rev. Sci. Instrum. 69(6), 2375–2384 (1998)CrossRefGoogle Scholar
  23. 23.
    Nagy, P.B.: Ultrasonic classification of imperfect interfaces. J. Nondestruct. Eval. 11(3–4), 127–139 (1992)CrossRefGoogle Scholar
  24. 24.
    Lavrentyev, A.I., Rokhlin, S.I.: Ultrasonic spectroscopy of imperfect contact interfaces between a layer and two solids. J. Acoust. Soc. Am. 103(2), 657–664 (1998)CrossRefGoogle Scholar
  25. 25.
    Kielczynski, P.: Attenuation of Love waves in low-loss media. J. Appl. Phys. 82(2), 5932–5937 (1997)CrossRefGoogle Scholar
  26. 26.
    Liu, J.S., Wang, L.J., Lu, Y.Y., He, S.T.: Properties of Love waves in a piezoelectric layered structure with a viscoelastic guiding layer. Smart Mater. Struct. 22(12), 125034 (2013)CrossRefGoogle Scholar
  27. 27.
    Yang, J.S.: An Introduction to the Theory of Piezoelectricity. Springer, Boston (2005)zbMATHGoogle Scholar
  28. 28.
    McMullan, C., Mehta, H., Gizeli, E., Lowe, C.R.: Modelling of the mass sensitivity of the Love wave device in the presence of a viscous liquid. J. Phys. D Appl. Phys. 33(23), 3053–3059 (2000)CrossRefGoogle Scholar
  29. 29.
    Itoh, A., Ichihashi, M.: A frequency of the quartz crystal microbalance (QCM) that is not affected by the viscosity of a liquid. Meas. Sci. Technol. 19(7), 075205 (2008)CrossRefGoogle Scholar
  30. 30.
    Zhang, H.F., Bao, Y.Y.: Sensitivity analysis of multi-layered \(c\)-axis inclined zigzag zinc oxide thin-film resonators as viscosity sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 525–534 (2014)CrossRefGoogle Scholar
  31. 31.
    Qin, L.F., Chen, Q.M., Cheng, H.B., Chen, Q., Li, J.F., Wang, Q.M.: Viscosity sensor using ZnO and AlN thin film bulk acoustic resonators with tilted polar \(c\)-axis orientations. J. Appl. Phys. 110(9), 094511 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Chunlong Gu
    • 1
  • Peng Li
    • 2
  • Feng Jin
    • 3
  • Gongfa Chen
    • 1
  • Liansheng Ma
    • 4
  1. 1.School of Civil and Transportation EngineeringGuangdong University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.School of Human Settlements and Civil EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  3. 3.State Key Laboratory for Strength and Vibration of Mechanical Structures, School of AerospaceXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  4. 4.School of ScienceLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations