Skip to main content
Log in

A numerical analysis of pressure drop and particle capture efficiency by rectangular fibers using LB-DE methods

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, a coupled lattice Boltzmann method (LBM) and discrete element method (DEM) are used to simulate the particle transport and deposition on rectangular fibers of a clean filter. The LBM is employed to describe the fluid flow around the fibers, whereas the DEM is used to deal with the particle dynamics. The effects of the Reynolds number, the fiber aspect ratio and the arrangement of fibers (i.e., orientation angle of a fiber) on the pressure drop and capture efficiency are investigated at the initial stage of the filtration process. The quality factor, commonly used to determine the filtration performance, is also studied. The simulation results illustrate that both pressure drop and capture efficiency are dependent on the orientation angle and aspect ratio. The Reynolds number has only a slight influence on the capture efficiency but has a significant effect on the pressure drop for high aspect ratio. A good filter performance can be obtained for a square fiber when the orientation angle is \(\pi /4\) from the quality factor standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, C., Lin, C.H., Cheung, C.S.: Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers. Powder Technol. 112, 149–162 (2000)

    Article  Google Scholar 

  2. Wang, K., Zhao, H.: The influence of fiber geometry and orientation angle on filtration performance. Aerosol Sci. Technol. 49, 75–85 (2015)

    Article  Google Scholar 

  3. Wang, J., Pui David, Y.H.: Filtration of aerosol particles by elliptical fibers: a numerical study. J. Nanopart. Res. 11, 185–196 (2009)

    Article  Google Scholar 

  4. Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds numbers. J. Phys. Soc. Jpn. 14, 527–537 (1959)

    Article  MathSciNet  Google Scholar 

  5. Lee, K.W., Liu, B.Y.H.: Theoretical study of aerosol filtration by fibrous filters. Aerosol Sci. Technol. 1, 147–161 (1982)

    Article  Google Scholar 

  6. Schweers, E., Umhauer, H., Lbffler, F.: Experimental investigation of particle collection on single fibres of different configurations. Part. Part. Syst. Charact. 1, 275–283 (1994)

    Article  Google Scholar 

  7. Augusto, L.L.X., Ross-jones, J., Lopes, G.C., Tronville, P., Gonalves, J.A.S., Krause, M.J.: Microfiber filter performance prediction using a lattice Boltzmann method. Commun. Comput. Phys. 23(4), 122 (2018)

    Article  Google Scholar 

  8. Liu, Z.G., Wang, P.K.: Pressure drop and interception efficiency of multifiber filters. Aerosol Sci. Technol. 26, 313–325 (1997)

    Article  Google Scholar 

  9. Stechkina, I.B., Kirsch, A., Fuchs, N.A.: Studies in fibrous aerosol filters. IV. Calculation of aerosol deposition in model filters in the range of maximum penetration. Ann. Occup. Hyg. 12, 1–8 (1969)

    Google Scholar 

  10. Fan, J., Lominé, F., Hellou, M.: Numerical study of particle capture efficiency in granular filter. EPJ Web of Conferences 140, 03,003 (2017)

  11. Rabiee, B.M., Talebi, S., Abouali, O., Izadpanah, E.: Investigation of the characteristics of particulate flows through fibrous filters using the lattice boltzmann method. Particuology 21, 90–98 (2015)

    Article  Google Scholar 

  12. Wang, H., Zhao, H., Guo, Z., Zheng, C.: Numerical simulation of particle capture process of fibrous filters using lattice boltzmann two-phase flow model. Powder Technol. 227, 111–122 (2012)

    Article  Google Scholar 

  13. Jafari, S., Salmanzadeh, M., Rahnama, M., Ahmadi, G.: Investigation of particle dispersion and deposition in a channel with a square cylinder obstruction using the lattice boltzmann method. J. Aerosol Sci. 41, 198–206 (2010)

    Article  Google Scholar 

  14. Hosseini, S.A., Tafreshi, H.V.: On the importance of fibers cross-sectional shape for air filters operating in the slip flow regime. Powder Technol. 212, 425–431 (2011)

    Article  Google Scholar 

  15. Kirsh, V.A.: Stokes flow and deposition of aerosol nanoparticles in model filters composed of elliptic fibers. Colloid J. 73, 345–351 (2011)

    Article  Google Scholar 

  16. Huang, H., Wang, K., Zhao, H.: Numerical study of pressure drop and diffusional collection efficiency of several typical noncircular fibers in filtration. Powder Technol. 292, 232–241 (2016)

    Article  Google Scholar 

  17. Fardi, B., Liu, B.Y.H.: Flow field and pressure drop of filters with rectangular fibers. Aerosol Sci. Technol. 17, 36–44 (1992)

    Article  Google Scholar 

  18. Fardi, B., Liu, B.Y.H.: Efficiency of fibrous filters with rectangular fibers. Aerosol Sci. Technol. 17, 4558 (1992)

    Google Scholar 

  19. Wang, C.Y.: Stokes flow through an array of rectangular fibers. Int. J. Multiph. Flow 22, 185–194 (1996)

    Article  MATH  Google Scholar 

  20. Ouyang, M., Liu, B.Y.H.: Analytical solution of flow field and pressure drop for filters with rectangular fibers. J. Aerosol Sci. 29, 187–196 (1998)

    Article  Google Scholar 

  21. Chen, S., Cheung, C.S., Chan, C.K., Zhu, C.: Numerical simulation of aerosol collection in filters with staggered parallel rectangular fibres. Comput. Mech. 28, 152–161 (2002)

    Article  MATH  Google Scholar 

  22. Filippova, O., Häanel, D.: Lattice-boltzmann simulation of gas-particle flow in filters. Comput. Fluids 26, 697–712 (1997)

    Article  MATH  Google Scholar 

  23. Przekop, R., Moskal, A., Gradoń, L.: Lattice-boltzmann approach for description of the structure of deposited particulate matter in fibrous filters. J. Aerosol Sci. 34, 133–147 (2003)

    Article  Google Scholar 

  24. Lantermann, Udo, Hänel, Dieter: Particle monte carlo and latticeboltzmann methods for simulations of gas-particle flows. Comput. Fluids 36, 407–422 (2007)

    Article  MATH  Google Scholar 

  25. Wang, H., Zhao, H., Wang, K., He, Y., Zheng, C.: Simulation of filtration process for multi-fiber filter using the Lattice-Boltzmann two-phase flow model. J. Aerosol Sci. 66, 164–178 (2013)

    Article  Google Scholar 

  26. Lin, K.C., Tao, H., Lee, K.W.: An early stage of aerosol particle transport in flows past periodic arrays of clear staggered obstructions: a computational study. Aerosol Sci. Technol. 48, 1299–1307 (2014)

    Article  Google Scholar 

  27. Ansari, V., Goharrizi, A.S., Jafari, S., Abolpour, B.: Numerical study of solid particles motion and deposition in a filter with regular and irregular arrangement of blocks with using lattice boltzmann method. Comput. Fluids 108, 170–178 (2015)

    Article  Google Scholar 

  28. Deng, Y., Liu, Z., Zhang, P., Liu, Y., Wu, Y.: Topology optimization of unsteady incompressible Navier–Stokes flows. J. Comput. Phys. 230(17), 6688–6708 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Deng, Y., Liu, Z., Wu, J., Wu, Y.: Topology optimization of steady Navier–Stokes flow with body force. Comput. Methods Appl. Mech. Eng. 255, 306–321 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. De Rosis, A., Falcucci, G., Ubertini, S., Ubertini, F., Succi, S.: Lattice Boltzmann analysis of fluid-structure interaction with moving boundaries. Commun. Comput. Phys. 13, 823–834 (2013)

    Article  MATH  Google Scholar 

  31. Ernst, M., Dietzel, M., Sommerfeld, M.: A lattice Boltzmann method for simulating transport and agglomeration of resolved particles. Acta Mech. 224(10), 2425–2449 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Trunk, R., Henn, T., Drfler, W., Nirschl, H., Krause, M.J.: Inertial dilute particulate fluid flow simulations with an Euler–Euler lattice Boltzmann method. J. Comput. Sci. 17, 438445 (2016)

    Article  MathSciNet  Google Scholar 

  33. Elghobashi, S.: Particle-laden turbulent flows: direct simulation and closure models. Appl. Sci. Res. 48, 301314 (1991)

    Article  MATH  Google Scholar 

  34. Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52(4), 309–329 (1994)

    Article  Google Scholar 

  35. Cundall, P.A., Strack, O.: Discrete numerical model for granular assemblies. Geomechanics 29, 47–65 (1979)

    Google Scholar 

  36. Lominé, F., Oger, L.: Dispersion of particles by spontaneous interparticle percolation through unconsolidated porous media. Phys. Rev. E 79, 1–12 (2009)

    Article  Google Scholar 

  37. Lominé, F., Oger, L.: Transit time during the interparticle percolation process. Phys. Rev. E 82, 041–301 (2010)

    Article  Google Scholar 

  38. Feng, Y.T., Han, K., Owen, D.R.J.: Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: computational issues. Int. J. Numer. Methods Eng. 72, 1111–1134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lominé, F., Scholtès, L., Sibille, L., Poullain, P.: Modeling of fluid–solid interaction in granular media with coupled lattice boltzmann/discrete element methods: application to piping erosion. Int. J. Numer. Anal. Methods Geomech. 37, 577–596 (2013)

    Article  Google Scholar 

  40. D’Humières, D., Lallemand, P., Frisch, U.: Lattice gas models for 3D hydrodynamics. Europhys. Lett. 2, 291–297 (1986)

    Article  Google Scholar 

  41. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  42. Qian, Y.H., DHumières, D., Lallemand, P.: Lattice bgk models for navierstokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  Google Scholar 

  43. Zou, Q., He, X.: Lattice bgk models for navier–stokes equation. Phys. Fluids 9, 1591–1598 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Behrend, O.: Solid-fluid boundaries in particle suspension simulations via the lattice boltzmann method. Phys. Rev. E 52, 1164–1175 (1995)

    Article  Google Scholar 

  46. Schwager, T., Poschel, T.: Coefficient of restitution and linear-dashpot model revisited. Granul. Matter 9, 465–469 (2007)

    Article  Google Scholar 

  47. Verlet, L.: Computer experiments on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  Google Scholar 

  48. Duval, H., Masson, D., Guillot, J.B., Schmitz, P., Humières, D.: Two-dimensional lattice-boltzmann model of hydrosol depth filtration. AIChE J. 52, 39–48 (2006)

    Article  Google Scholar 

  49. Fan, J., Lominé, F., Hellou, M.: Modelling particle capture efficiency with lattice boltzmann method. Commun. Comput. Phys. 23(4), 932–950 (2018)

    Google Scholar 

  50. Kuo, Y.M., Huang, S.H., Lin, W.Y., Hsiao, M.F., Chen, C.C.: Filtration and loading characteristics of granular bed filters. J. Aerosol Sci. 41, 223–229 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Lominé, F. & Hellou, M. A numerical analysis of pressure drop and particle capture efficiency by rectangular fibers using LB-DE methods. Acta Mech 229, 2843–2860 (2018). https://doi.org/10.1007/s00707-018-2140-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2140-4

Navigation