Advertisement

Acta Mechanica

, Volume 229, Issue 7, pp 2835–2842 | Cite as

A JKR solution for a ball-in-socket contact geometry as a bi-stable adhesive system

  • M. Ciavarella
Original Paper
  • 50 Downloads

Abstract

In the present note, we start by observing that in the classical JKR theory of adhesion, using the usual Hertzian approximations, the pull-off load grows unbounded when the clearance goes to zero in a conformal “ball-in-socket” geometry. To consider the case of the conforming geometry, we use a recent rigorous general extension of the original JKR energetic derivation, which requires only adhesionless solutions, and an approximate adhesionless solution given in the literature. We find that depending on a single governing parameter of the problem, \(\theta =\Delta R/\left( 2\pi wR/E^{*}\right) \) where \(E^{*}\) is the plane strain elastic modulus of the material couple, w the surface energy, \(\Delta R\) the clearance and R the radius of the sphere, the system shows the classical bi-stable behaviour for a single sinusoid or a dimpled surface: pull-off is approximately that of the JKR theory for \(\theta >0.82\) only if the system is not “pushed” strong enough, otherwise a “strong adhesion” regime is found. Below this value, \(\theta <0.82\), a strong spontaneous adhesion regime is found similar to “full contact”. From the strong regime, pull-off will require a separate investigation depending on the actual system at hand.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argatov, I., Li, Q., Pohrt, R., Popov, V.L.: JohnsonKendallRoberts adhesive contact for a toroidal indenter. Proc. R. Soc. A 472, 20160218 (2016)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brockett, C., Williams, S., Jin, Z., Isaac, G., Fisher, J.: Friction of total hip replacements with different bearings and loading conditions. J. Biomed. Mater. Res. B Appl. Biomater. 81(2), 508–515 (2007)CrossRefGoogle Scholar
  3. 3.
    Ciavarella, M.: An approximate JKR solution for a general contact, including rough contacts. arXiv preprint arXiv:1712.05844 (2017)
  4. 4.
    Ciavarella, M., Baldini, A., Barber, J.R., Strozzi, A.: Reduced dependence on loading parameters in almost conforming contacts. Int. J. Mech. Sci. 48(9), 917–925 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ciavarella, M., Papangelo, A., Afferrante, L.: Adhesion between self-affine rough surfaces: Possible large effects in small deviations from the nominally Gaussian case. Tribol. Int. 109, 435–440 (2017)CrossRefGoogle Scholar
  6. 6.
    Ciavarella, M., Papangelo, A.: A generalized Johnson parameter for pull-off decay in the adhesion of rough surfaces. Phys. Mesomech. 21(1), 67–75 (2018)CrossRefGoogle Scholar
  7. 7.
    Ciavarella, M., Papangelo, A.: A modified form of Pastewka–Robbins criterion for adhesion. J. Adhes. 94(2), 155–165 (2018)CrossRefGoogle Scholar
  8. 8.
    Fang, X., Zhang, C., Chen, X., Wang, Y., Tan, Y.: A new universal approximate model for conformal contact and non-conformal contact of spherical surfaces. Acta Mech. 226(6), 1657–1672 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  10. 10.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 1558 (1971)CrossRefGoogle Scholar
  11. 11.
    Johnson, K.L.: The adhesion of two elastic bodies with slightly wavy surfaces. Int. J. Solids Struct. 32(3/4), 423–430 (1995)CrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, C.S., Zhang, K., Yang, L.: Normal force-displacement relationship of spherical joints with clearances. J. Comput. Nonlinear Dyn. 1(2), 160–167 (2006)CrossRefGoogle Scholar
  13. 13.
    Lyashenko, I.A.: Tangential displacement influence on the critical normal force of adhesive contact breakage in biological systems. Facta Univ. Ser Mech. Eng. 14(3), 313–320 (2016)CrossRefGoogle Scholar
  14. 14.
    McMeeking, R.M., Ma, L., Arzt, E.: Bi-stable Adhesion of a surface with a dimple. Adv. Eng. Mater. 12(5), 389–397 (2010)CrossRefGoogle Scholar
  15. 15.
    Papangelo, A., Ciavarella, M.: A Maugis-Dugdale cohesive solution for adhesion of a surface with a dimple. J. R. Soc. Interface 14(127), 20160996 (2017)CrossRefGoogle Scholar
  16. 16.
    Papangelo, A., Ciavarella, M.: Adhesion of surfaces with wavy roughness and a shallow depression. Mech. Mater. 118, 11–16 (2018)CrossRefGoogle Scholar
  17. 17.
    Papangelo, A., Afferrante, L., Ciavarella, M.: A note on the pull-off force for a pattern of contacts distributed over a halfspace. Meccanica 52(11–12), 2865–2871 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pastewka, L., Robbins, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. Proc. Nat. Acad. Sci. 111(9), 3298–3303 (2014)CrossRefGoogle Scholar
  19. 19.
    Popov, V.L., He, M., Willert, E.: Handbuch der Kontaktmechanik: Exakte Lösungen axialsymmetrischer Kontaktprobleme, p. 341. Springer, Berlin (2017)Google Scholar
  20. 20.
    Popov, V.L., Pohrt, R., Li, Q.: Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction 5(3), 308325 (2017b)CrossRefGoogle Scholar
  21. 21.
    Pohrt, R., Popov, V.L.: Adhesive contact simulation of elastic solids using local meshdependent detachment criterion in boundary elements method. Facta Universitatis, Ser. Mech. Eng. 13, 310 (2015)Google Scholar
  22. 22.
    Steuermann, E.: (1939) To Hertz’s theory of local deformations in compressed elastic bodies. In CR (Dokl.) Acad. Sci. URSS (Vol. 25, No. 5, pp. 359-361)Google Scholar
  23. 23.
    Sundaram, N., Farris, T.N., Chandrasekar, S.: JKR adhesion in cylindrical contacts. J. Mech. Phys. Solids 60(1), 37–54 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Willert, E., Li, Q., Popov, V.L.: The JKR-adhesive normal contact problem of axisymmetric rigid punches with a flat annular shape or concave profiles. Facta Univ. Ser. Mech. Eng. 14(3), 281–292 (2016)CrossRefGoogle Scholar
  25. 25.
    Wang, S., Wang, F., Liao, Z., Wang, Q., Liu, Y., Liu, W.: Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk. Mater. Sci. Eng., C 55, 22–33 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Politecnico di BARI, Department of Mechanical EngineeringCenter of Excellence in Computational MechanicsBariItaly

Personalised recommendations