Advertisement

Acta Mechanica

, Volume 229, Issue 7, pp 2923–2946 | Cite as

Locking alleviation in the large displacement analysis of beam elements: the strain split method

  • Mohil Patel
  • Ahmed A. Shabana
Original Paper
  • 84 Downloads

Abstract

This paper proposes a new locking alleviation technique for absolute nodal coordinate formulation (ANCF) beam and plate elements based on a strain split approach. The paper also surveys classical finite element (FE) and ANCF locking alleviation techniques discussed in the literature. Because ANCF beam elements, which allow for the cross-sectional stretch fully capture the Poisson effect, Poisson locking is an issue when such beam elements are considered. The two-dimensional fully parameterized ANCF beam element is primarily used in this investigation because such an element can serve as a good surrogate model for three-dimensional ANCF beams and plates as far as membrane, bending and transverse shearing behavior is concerned. In addition to proposing the strain split method (SSM) for ANCF locking alleviation, this work assesses the ANCF element performance in the cases of higher-order interpolation, enhanced assumed strain method, elastic line method, and the enhanced continuum mechanics approach, and demonstrates the design of the enhanced strain interpolation function by using the shape functions of higher-order ANCF elements. Additionally, a new higher-order ANCF two-dimensional beam element is proposed in order to compare its performance with other finite elements that require the use of other locking alleviation techniques proposed and reviewed in the paper. Finally, several numerical examples are shown to demonstrate the effectiveness of the locking alleviation methods applied to ANCF elements. The purpose of this investigation, apart from proposing a new locking alleviation technique, a new higher-order beam element, and comparing several existing locking alleviation techniques, is to show that dealing with locking in fully parameterized ANCF elements is feasible and that several methods exist to effectively improve the ANCF element performance without sacrificing important ANCF element properties and features including position vector gradient continuity. Because of the use of ANCF position vector gradients as nodal coordinates, complex stress-free initially-curved geometries can be systematically obtained. Such initially-curved geometries require special attention when attempting to solve locking problems, as will be discussed in this paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andelfinger, U., Ramm, E.: EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int. J. Numer. Methods Eng. 36(8), 1311–1337 (1993)CrossRefzbMATHGoogle Scholar
  2. 2.
    Armero, F.: On the locking and stability of finite elements in finite deformation plane strain problems. Comput. Struct. 75(3), 261–290 (2000)CrossRefGoogle Scholar
  3. 3.
    Babuska, I., Suri, M.: Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62(1), 439–463 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Babuska, I., Suri, M.: On locking and robustness in the finite element method. SIAM J. Numer. Anal. 29(5), 1261–1293 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bathe, K.J.: The inf-sup condition and its evaluation for mixed finite element methods. Comput. Struct. 79(2), 243–252 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bazeley, G.P., Cheung, Y.K., Irons, B.M., Zienkiewicz, O.C. (1965) Triangular elements in plate bending—conforming and nonconforming solutions. In: Proceedings of First Conference on Matrix Methods in Structural Mechanics, Wright-Patterson ATBFB, OhioGoogle Scholar
  7. 7.
    Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N., Ong, J.S.J.: Stress projection for membrane and shear locking in shell finite elements. Comput. Methods Appl. Mech. Eng. 51(1–3), 221–258 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bergan, P.G., Nygard, M.K.: Finite elements with increased freedom in choosing shape functions. Int. J. Numer. Meth. Eng. 20(4), 643–663 (1984)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bischoff, M., Ramm, E.: Shear deformable shell elements for large strains and rotations. Int. J. Numer. Meth. Eng. 40(23), 4427–4449 (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bischoff, M., Romero, I.: A generalization of the method of incompatible modes. Int. J. Numer. Methods Eng. 69(9), 1851–1868 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  12. 12.
    Carpenter, N., Belytschko, T., Stolarski, H.: Locking and shear scaling factors in \(C^{0}\) bending elements. Comput. Struct. 22(1), 39–52 (1986)CrossRefzbMATHGoogle Scholar
  13. 13.
    Choi, J., Lim, J.: General curved beam elements based on the assumed strain fields. Comput. Struct. 55(3), 379–386 (1995)CrossRefzbMATHGoogle Scholar
  14. 14.
    De Souza Neto, E.A., Peric, D., Owen, D.R.J.: Computational Methods for Plasticity: Theory and Applications. Wiley, West Sussex (2008)CrossRefGoogle Scholar
  15. 15.
    Dmitrochenko, O., Hussein, B.A., Shabana, A.A.: Coupled deformation modes in the large deformation finite element analysis: generalization. ASME J. Comput. Nonlinear Dyn. 4(2), 021002-1–021002-8 (2009)CrossRefGoogle Scholar
  16. 16.
    Dong, S.B., Alpdogan, C., Taciroglu, E.: Much ado about shear correction factors in Timoshenko beam theory. Int. J. Solids Struct. 47(13), 1651–1665 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Dorfi, H.R., Busby, H.R.: An effective curved composite beam finite element based on the hybrid-mixed formulation. Comput. Struct. 53(1), 43–52 (1994)CrossRefzbMATHGoogle Scholar
  18. 18.
    Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A two-dimensional shear deformable beam element based on absolute nodal coordinate formulation. J. Sound Vib. 280(3–5), 719–738 (2005)CrossRefGoogle Scholar
  19. 19.
    Ebel, H., Matikainen, M.K., Hurskainen, V., Mikkola, A.: Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Nonlinear Dyn. 88(2), 1075–1091 (2016)CrossRefGoogle Scholar
  20. 20.
    Ebel, H., Matikainen, M.K., Hurskainen, V., Mikkola, A.: Higher-order plate elements for large deformation analysis in multibody applications. In: Proceedings of the ASME 2016 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Charlotte, North Carolina, USA, August 21–24 (2016)Google Scholar
  21. 21.
    Felippa, C.A.: The extended free formulation of finite elements in linear elasticity. ASME J. Appl. Mech. 56(3), 609–616 (1989)CrossRefzbMATHGoogle Scholar
  22. 22.
    Friedman, Z., Kosmatka, J.B.: An improved two-node Timoshenko beam finite element. Comput. Struct. 47(3), 473–481 (1993)CrossRefzbMATHGoogle Scholar
  23. 23.
    Garcia-Vallejo, D., Mikkola, A., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1), 249–264 (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318(3), 461–487 (2008)CrossRefGoogle Scholar
  25. 25.
    Gerstmayr, J., Matikainen, M.: Analysis of stress and strain in the absolute nodal coordinate formulation. Mech. Based Des. Struct. Mach. Int. J. 34(4), 409–430 (2006)CrossRefGoogle Scholar
  26. 26.
    Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Sys.Dyn. 20, 359–384 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. ASME J. Comput. Nonlinear Dyn. 8(3), 031016-1–031016-12 (2013)Google Scholar
  28. 28.
    Hamed, A.M., Jayakumar, P., Letherwood, M.D., Gorsich, D.J., Recuero, A.M., Shabana, A.A.: Ideal compliant joints and integration of computer aided design and analysis. ASME J. Comput. Nonlinear Dyn. 10(2), 021015-1–021015-14 (2015)Google Scholar
  29. 29.
    Heyliger, P.R., Reddy, J.N.: A higher-order beam finite element for bending and vibration problems. J. Sound Vib. 126(2), 309–326 (1988)CrossRefzbMATHGoogle Scholar
  30. 30.
    Hughes, T.J.R., Cohen, M., Haroun, M.: Reduced and selective integration techniques in the finite element analysis of plates. Nucl. Eng. Des. 46(1), 203–222 (1978)CrossRefGoogle Scholar
  31. 31.
    Hughes, T.J.R., Taylor, R., Kanoknukulchai, W.: A simple and efficient finite element for plate bending. Int. J. Numer. Methods Eng. 11(10), 1529–1543 (1977)CrossRefzbMATHGoogle Scholar
  32. 32.
    Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, New Jersey (1987)zbMATHGoogle Scholar
  33. 33.
    Hurskainen, V.T., Matikainen, M.K., Wang, J., Mikkola, A.M.: A planar beam finite-element formulation with individually interpolated shear deformation. ASME J. Comput. Nonlinear Dyn. 12(4), 041007-1–041007-8 (2017)Google Scholar
  34. 34.
    Hussein, B.A., Sugiyama, H., Shabana, A.A.: Coupled deformation modes in the large deformation finite-element analysis: problem definition. ASME J. Comput. Nonlinear Dyn. 2(2), 146–154 (2007)CrossRefGoogle Scholar
  35. 35.
    Ibrahimbegovic, A., Wilson, E.L.: A modified method of incompatible modes. Int. J. Numer. Methods Biomed. Eng. 7(3), 187–194 (1991)zbMATHGoogle Scholar
  36. 36.
    Kerkkanen, K.S., Sopanen, J.T., Mikkola, A.M.: A linear beam finite element based on the absolute nodal coordinate formulation. ASME J. Mech. Des. 127(4), 621–630 (2005)CrossRefGoogle Scholar
  37. 37.
    Kim, J.G., Kim, Y.Y.: A new higher-order hybrid-mixed curved beam element. Int. J. Numer. Methods Eng. 43(5), 925–940 (1998)CrossRefzbMATHGoogle Scholar
  38. 38.
    Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. ASME J. Vib. Acoust. 139(1), 011010-1–011010-12 (2017)Google Scholar
  39. 39.
    Lee, P., Sin, H.: Locking-free curved beam element based on curvature. Int. J. Numer. Methods Eng. 37(6), 989–1007 (1994)CrossRefzbMATHGoogle Scholar
  40. 40.
    Liu, W.K., Belytschko, T., Chen, J.: Nonlinear versions of flexurally superconvergent elements. Comput. Methods Appl. Mech. Eng. 71(3), 241–258 (1988)CrossRefzbMATHGoogle Scholar
  41. 41.
    Liu, C., Tian, Q., Hu, H.: Dynamics of a large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Sys.Dyn. 26(3), 283–305 (2011)CrossRefzbMATHGoogle Scholar
  42. 42.
    Malkus, D., Hughes, T.J.R.: Mixed finite element methods—reduced and selective integration techniques: a unification of concepts. Comput. Methods Appl. Mech. Eng. 15(1), 63–81 (1978)CrossRefzbMATHGoogle Scholar
  43. 43.
    Matikainen, M.K., Dmitrochenko, O., Mikkola, A.: Beam elements with trapezoidal cross section deformation modes based on the absolute nodal coordinate formulation. In: International Conference on Numerical Analysis and Applied Mathematics, Rhodes, Greece, September 19–25 (2010)Google Scholar
  44. 44.
    Mikkola, A.M., Matikainen, M.K.: Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation. ASME J. Comput. Nonlinear Dyn. 1(2), 103–108 (2006)CrossRefGoogle Scholar
  45. 45.
    Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9(3), 283–309 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Mohamed, A.N.A., Liu, J.: The three-dimensional gradient deficient beam element (beam9) using the absolute nodal coordinate formulation. In: Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Buffalo, New York, USA, August 17–20 (2014)Google Scholar
  47. 47.
    Nachbagauer, K.: State of the Art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and locking phenomenon in comparison with proposed beam finite elements. Arch. Comput. Methods Eng. 21(3), 293–319 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. ASME J. Comput. Nonlinear Dyn. 8(2), 021004-1–021004-7 (2013)Google Scholar
  49. 49.
    Nachbagauer, K., Gruber, P., Gerstmayr, J.: A 3D shear deformable finite element based on absolute nodal coordinate formulation. Multibody Dyn. Comput. Methods Appl. Sci. 28, 77–96 (2013)CrossRefzbMATHGoogle Scholar
  50. 50.
    Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)CrossRefzbMATHGoogle Scholar
  51. 51.
    Noor, A., Peters, J.: Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams. Int. J. Numer. Methods Eng. 17(4), 615–631 (1981)CrossRefzbMATHGoogle Scholar
  52. 52.
    Ogden, R.W.: Nonlinear Elastic Deformations. Ellis Harwood Ltd., Chichester (1984)Google Scholar
  53. 53.
    Olshevskiy, A., Dmitrochenko, O., Kim, C.W.: Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. ASME J. Comput. Nonlinear Dyn. 9(2), 021001-1–021001-10 (2014)Google Scholar
  54. 54.
    Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)CrossRefGoogle Scholar
  55. 55.
    Orzechowski, G., Fraczek, J.: Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF. Nonlinear Dyn. 82(1), 451–464 (2015)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Orzechowski, G., Shabana, A.A.: Analysis of warping deformation modes using higher-order ANCF beam element. J. Sound Vib. 363, 428–445 (2016)CrossRefGoogle Scholar
  57. 57.
    Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully-parameterized plate finite element. ASME J. Comput. Nonlinear Dyn. 12(3), 031008-1–031008-13 (2017)Google Scholar
  58. 58.
    Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. ASME J. Comput. Nonlinear Dyn. 11(5), 051009-1–051009-15 (2016)Google Scholar
  59. 59.
    Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Park K J. Multibody Dyn. 230(1), 69–84 (2016)Google Scholar
  60. 60.
    Pian, T.H.H.: Finite elements based on consistently assumed stresses and displacements. Finite Elem. Anal. Des. 1(2), 131–140 (1985)CrossRefzbMATHGoogle Scholar
  61. 61.
    Pian, T.H.H., Sumihara, K.: Rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20(9), 1685–1695 (1984)CrossRefzbMATHGoogle Scholar
  62. 62.
    Prathap, G., Babu, R.: Field-consistent strain interpolations for the quadratic shear flexible beam element. Int. J. Numer. Methods Eng. 23(11), 1973–1984 (1986)CrossRefzbMATHGoogle Scholar
  63. 63.
    Prathap, G., Babu, R.: An isoparametric quadratic thick curved beam element. Int. J. Numer. Methods Eng. 23(9), 1583–1600 (1984)CrossRefzbMATHGoogle Scholar
  64. 64.
    Prathap, G., Bhashyam, G.R.: Reduced integration and the shear-flexible beam element. Int. J. Numer. Methods Eng. 18(2), 195–210 (1982)CrossRefzbMATHGoogle Scholar
  65. 65.
    Rakowski, J.: The interpretation of the shear locking in beam elements. Comput. Struct. 37(5), 769–776 (1990)CrossRefGoogle Scholar
  66. 66.
    Rakowski, J.: A critical analysis of quadratic beam finite elements. Int. J. Numer. Methods Eng. 31(5), 949–966 (1991)CrossRefzbMATHGoogle Scholar
  67. 67.
    Raveendranath, P., Singh, G., Pradhan, B.: A two-noded locking-free shear flexible curved beam element. Int. J. Numer. Methods Eng. 44(2), 265–280 (1999)CrossRefzbMATHGoogle Scholar
  68. 68.
    Reddy, J.N.: On locking-free shear deformable beam finite elements. Comput. Methods Appl. Mech. Eng. 149(1–4), 113–132 (1997)CrossRefzbMATHGoogle Scholar
  69. 69.
    Reddy, J.N., Wang, C.M., Lee, K.H.: Relationships between bending solutions of classical and shear deformation beam theories. Int. J. Solids Struct. 34(26), 3373–3384 (1997)CrossRefzbMATHGoogle Scholar
  70. 70.
    Sanborn, G.G., Choi, J., Choi, J.H.: Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate elements. Multibody Syst. Dyn. 26(2), 191–211 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Sanborn, G.G., Shabana, A.A.: A rational finite element method based on the absolute nodal coordinate formulation. Nonlinear Dyn. 58, 565–572 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation. In: Proceedings of ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Long Beach, CA, September 24–28 (2005)Google Scholar
  73. 73.
    Schwarze, M., Reese, S.: A reduced integration solid-shell finite element based on the EAS and ANS concept—geometrically linear problems. Int. J. Numer. Methods Eng. 80(10), 1322–1355 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Shabana, A.A.: Computational Continuum Mechanics, 3rd edn. Wiley, Chichester (2018)CrossRefzbMATHGoogle Scholar
  76. 76.
    Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)CrossRefzbMATHGoogle Scholar
  77. 77.
    Shen, Z., Li, P., Liu, C., Hu, G.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77(3), 1019–1033 (2014)CrossRefGoogle Scholar
  78. 78.
    Simo, J.C., Armero, F.: Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 33(7), 1413–1449 (1992)CrossRefzbMATHGoogle Scholar
  79. 79.
    Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29(8), 1595–1638 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Simo, J.C., Armero, F., Taylor, R.L.: Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput. Methods Appl. Mech. Eng. 110(3–4), 359–386 (1993)CrossRefzbMATHGoogle Scholar
  81. 81.
    Sopanen, J., Mikkola, A.: Studies on the stiffness properties of the absolute nodal coordinate formulation for three-dimensional beams. In: Proceedings Of Design Engineering Technical Conferences & Computers & Information in Engineering Conference, Chicago, Illinois, USA, September 2–6, 2003 (2003)Google Scholar
  82. 82.
    Stolarski, H., Belytschko, T.: On the equivalence of mode decomposition and mixed finite elements based on the Hellinger–Reissner principle. Part 1: theory. Comput. Methods Appl. Mech. Eng. 58(3), 249–263 (1986)CrossRefzbMATHGoogle Scholar
  83. 83.
    Stolarski, H., Belytschko, T.: On the equivalence of mode decomposition and mixed finite elements based on the Hellinger–Reissner principle. Part 2: applications. Comput. Methods Appl. Mech. Eng. 58(3), 265–284 (1986)CrossRefzbMATHGoogle Scholar
  84. 84.
    Stolarski, H., Belytschko, T.: Shear and membrane locking in curved \(C^{0}\) elements. Comput. Methods Appl. Mech. Eng. 41(3), 279–296 (1983)CrossRefzbMATHGoogle Scholar
  85. 85.
    Stolarski, H., Chen, Y.: Assumed strain formulation for the four-node quadrilateral with improved in-plane bending behavior. Int. J. Numer. Methods Eng. 38(8), 1287–1305 (1995)CrossRefzbMATHGoogle Scholar
  86. 86.
    Sugiyama, H., Gerstmayr, J., Shabana, A.A.: Deformation modes in the finite element absolute nodal coordinate formulation. J Sound Vib 298(4–5), 1129–1149 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Sugiyama, H., Koyama, H., Yamashita, H.: Gradient deficient curved beam element using the absolute nodal coordinate formulation. ASME J. Comput. Nonlinear Dyn. 5(2), 021001-1–021001-8 (2010)CrossRefGoogle Scholar
  88. 88.
    Sussman, T., Bathe, K.J.: A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. Struct. 26(1–2), 357–409 (1987)CrossRefzbMATHGoogle Scholar
  89. 89.
    Sussman, T., Bathe, K.J.: Spurious modes in geometrically nonlinear small displacement finite elements with incompatible modes. Comput. Struct. 140, 14–22 (2014)CrossRefGoogle Scholar
  90. 90.
    Taylor, R.L., Beresford, P.J., Wilson, E.L.: A non-conforming element for stress analysis. Int. J. Numer. Methods Eng. 10(6), 1211–1219 (1976)CrossRefzbMATHGoogle Scholar
  91. 91.
    Taylor, R.L., Filippou, F.C., Saritas, A., Auricchio, F.: A mixed finite element method for beam and frame problems. Comput. Mech. 31(1), 192–203 (2003)CrossRefzbMATHGoogle Scholar
  92. 92.
    Tessler, A., Hughes, T.J.R.: An improved treatment of transverse shear in the Mindlin-type four node quadrilateral element. Comput. Methods Appl. Mech. Eng. 39(3), 311–335 (1983)CrossRefzbMATHGoogle Scholar
  93. 93.
    Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic beams. Philos. Mag. 41, 744–746 (1921)CrossRefGoogle Scholar
  94. 94.
    Valkeapää, A.I., Yamashita, H., Jayakumar, P., Sugiyama, H.: On the use of elastic middle surface approach in the large deformation analysis of moderately thick shell structures using absolute nodal coordinate formulation. Nonlinear Dyn. 80(3), 1133–1146 (2015)MathSciNetCrossRefGoogle Scholar
  95. 95.
    Von Dombrowski, S.: Modellierung von Balken bei grossen Verformungen für ein kraftreflektierendes Eingabegerät, Diploma thesis, University Stuttgart & DLR (1997)Google Scholar
  96. 96.
    Wilson, E.L., Taylor, R.L., Doherty, W.P., Ghaboussi, J.: Incompatible displacement models. In: Fenves, J.S., Perrone, N., Robinson, A.R. (eds.) Numerical and Computer Models in Structural Mechanics, pp. 43–57. Academic Press, New York (1973).  https://doi.org/10.1016/B978-0-12-253250-4.50008-7
  97. 97.
    Wriggers, P., Reese, S.: A note on enhanced strain methods for large deformations. Comput. Methods Appl. Mech. Eng. 135(3–4), 201–209 (1996)CrossRefzbMATHGoogle Scholar
  98. 98.
    Yakoub, R.Y., Shabana, A.A.: Three-dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. ASME J. Mech. Des. 123(4), 614–621 (2001)CrossRefGoogle Scholar
  99. 99.
    Yamashita, H., Valkeapää, A.I., Jayakumar, P., Sugiyama, H.: Continuum mechanics based bilinear shear deformable shell element using the absolute nodal coordinate formulation. ASME. J. Comput. Nonlinear Dyn. 10(5), 051012-1–051012-9 (2015)Google Scholar
  100. 100.
    Yunhua, L.: Explanation and elimination of shear locking and membrane locking with field consistence approach. Comput. Methods Appl. Mech. Eng. 162(1–4), 249–269 (1998)CrossRefzbMATHGoogle Scholar
  101. 101.
    Zheng, Y., Shabana, A.A.: A two-dimensional shear deformable ANCF consistent rotation-based formulation beam element. Nonlinear Dyn. 87(2), 1031–1043 (2017)CrossRefGoogle Scholar
  102. 102.
    Zienkiewicz, O.C., Owen, D.R.J., Lee, K.N.: Least square-finite element for elasto-static problems. Use of ‘reduced’ integration. Int. J. Numer. Methods Eng. 8(2), 341–358 (1974)CrossRefzbMATHGoogle Scholar
  103. 103.
    Zienkiewicz, O.C., Taylor, R., Too, J.M.: Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Methods Eng. 3(2), 275–290 (1971)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations