Advertisement

Acta Mechanica

, Volume 229, Issue 6, pp 2307–2325 | Cite as

Modal characterization and structural aerodynamic response of a crane fly forewing

  • Jose E. Rubio
  • Paul J. Schilling
  • Uttam K. Chakravarty
Original Paper
  • 92 Downloads

Abstract

This study describes a method for investigating the modal characteristics and the structural aerodynamic response of the crane fly (family Tipulidae) forewing under different airflow conditions. A micro-computed tomography scan is conducted to characterize the internal and external morphologies of the insect wing. A finite element model of the crane fly forewing is developed to determine its natural frequencies and mode shapes. The FE model is validated by comparing the natural frequencies of a beam with similar mechanical properties and geometric characteristics of those from the veins of the crane fly forewing to its analytical solution from the Euler–Bernoulli beam theory. A numerical simulation of the fluid–structure interaction is conducted by coupling the finite element model of the crane fly forewing with a computational fluid dynamics model of the surrounding airflow. From this simulation, the deformation response and the coefficients of drag and lift of the insect wing are predicted for different Reynolds numbers and angles of attack. The mode shapes show regions of low stiffness at the trailing and leading edges of the wing. The deformation increases nonlinearly from the root to the tip of the wing, and the aerodynamic efficiency of the insect wing increases with angle of attack and freestream velocity, especially for high Reynolds numbers.

List of symbols

U

Deformation magnitude

\(V_\infty \)

Freestream velocity

v

Velocity

x

Cartesian coordinate in the chordwise direction of the wing

y

Cartesian coordinate in the spanwise direction of the wing

z

Cartesian coordinate in the out-of-plane direction of the wing

\(\theta \)

Angle of attack

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Louisiana Board of Regents’ support fund, contract number LEQSF(2013-16)-RD-A-17. The authors would like to thank Mr. William Miller Jr. for his collaboration during the micro-CT scanning of the crane fly forewing.

References

  1. 1.
    McMichael, J.M., Francis, M.S.: Micro air vehicles-towards a new dimension in flight. Unmanned Syst. 15, 10–15 (1997)Google Scholar
  2. 2.
    Pines, D., Bohorquez, F.: Challenges facing future micro-air-vehicle development. J. Aircr. 23, 290–304 (2006).  https://doi.org/10.2514/1.4922 CrossRefGoogle Scholar
  3. 3.
    Ellington, C.P.: The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci 305, 79–113 (1984).  https://doi.org/10.1098/rstb.1984.0052 CrossRefGoogle Scholar
  4. 4.
    Sane, S.: The aerodynamics of insect flight. J. Exp. Biol. 206, 4191–4208 (2003).  https://doi.org/10.1242/jeb.00663 CrossRefGoogle Scholar
  5. 5.
    Rees, C.J.: Form and function in corrugated insect wings. Nature 256, 200–203 (1975).  https://doi.org/10.1038/256200a0 CrossRefGoogle Scholar
  6. 6.
    Wootton, R.J.: The mechanical design of insect wings. Sci. Am. 203, 114–120 (1990).  https://doi.org/10.1146/annurev.en.37.010192.000553 CrossRefGoogle Scholar
  7. 7.
    Young, J., Walker, S., Bomphrey, R., Taylor, G., Thomas, A.: Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325, 1549–1552 (2009).  https://doi.org/10.1126/science.1175928 CrossRefGoogle Scholar
  8. 8.
    Miller, L.A., Peskin, C.S.: A computational fluid dynamics of “clap and fling” in the smallest insects. J. Exp. Biol. 208, 195–212 (2004).  https://doi.org/10.1242/jeb.01376 CrossRefGoogle Scholar
  9. 9.
    Miller, L.A., Peskin, C.S.: Flexible clap and fling in tiny insect flight. J. Exp. Biol. 212, 3076–3090 (2009).  https://doi.org/10.1242/jeb.028662 CrossRefGoogle Scholar
  10. 10.
    Ellington, C.P., van den Berg, C., Willmont, A.P., Thomas, A.L.R.: Leading edge vortices in insect flight. Nature 348, 626–630 (1996).  https://doi.org/10.1038/384626a0 CrossRefGoogle Scholar
  11. 11.
    Birch, J.M., Dickson, W.B., Dickinson, M.H.: Force production and flow structure of the leading edge vortex of flapping wings at high and low Reynolds number. J. Exp. Biol. 207, 1063–1072 (2004).  https://doi.org/10.1242/jeb.00848 CrossRefGoogle Scholar
  12. 12.
    Ennos, A.R., Wootton, R.J.: Functional wing morphology and aerodynamics of Panorpa germanica (Insecta Mecoptera). J. Exp. Biol. 143, 267–284 (1989)Google Scholar
  13. 13.
    Wootton, R.J.: Functional morphology of insect wings. Annu. Rev. Entomol. 37, 113–140 (1992).  https://doi.org/10.1146/annurev.en.37.010192.000553 CrossRefGoogle Scholar
  14. 14.
    Wootton, R.J.: Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta Papilionoidea). J. Exp. Biol. 40, 105–117 (1993)Google Scholar
  15. 15.
    Zhao, L., Huang, Q., Deng, X., Sane, S.P.: Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 7, 485–497 (2010).  https://doi.org/10.1098/rsif.2009.0200 CrossRefGoogle Scholar
  16. 16.
    Mountcastle, A.M., Combes, S.A.: Wing flexibility enhances load-lifting capacity in bumblebees. Proc. R. Soc. B Biol. Sci. 280, 1–8 (2013).  https://doi.org/10.1098/rspb.2013.0531/ CrossRefGoogle Scholar
  17. 17.
    Kang, C.K., Shyy, W.: Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. J. R. Soc. Interface 10, 1–11 (2013).  https://doi.org/10.1098/rsif.2013.0361 CrossRefGoogle Scholar
  18. 18.
    Xiao, Q., Hu, J., Liu, H.: Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings. Bioinspir. Biomim. 9, 1–15 (2014).  https://doi.org/10.1088/1748-3182/9/1/016008 CrossRefGoogle Scholar
  19. 19.
    Combes, S.A., Daniel, T.L.: Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J. Exp. Biol. 206, 2979–2987 (2003).  https://doi.org/10.1242/jeb.00523 CrossRefGoogle Scholar
  20. 20.
    Combes, S.A., Daniel, T.L.: Flexural stiffness in insect wings II. Spatial distribution and dynamic bending. J. Exp. Biol. 206, 2989–2997 (2003).  https://doi.org/10.1242/jeb.00524 CrossRefGoogle Scholar
  21. 21.
    Wang, X., Li, Y., Shi, Y.: Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein. Compos. Sci. Technol. 68, 186–192 (2008).  https://doi.org/10.1016/j.compscitech.2007.05.023 CrossRefGoogle Scholar
  22. 22.
    Li, Y., Wang, X.: Investigation on characteristics of structure and simulation analysis for dragonfly wing vein. Adv. Mater. Res. 33, 785–788 (2008).  https://doi.org/10.4028/www.scientific.net/AMR.33-37.785 CrossRefGoogle Scholar
  23. 23.
    Jongerius, S., Lentink, D.: Structural analysis of a dragonfly wing. Exp. Mech. 50, 1323–1334 (2010).  https://doi.org/10.1007/s11340-010-9411-x CrossRefGoogle Scholar
  24. 24.
    Sims, T., Palazotto, A., Norris, A.: A structural dynamic analysis of a Manduca sexta forewing. Int. J. Micro Air Veh. 2, 119–140 (2010).  https://doi.org/10.1260/1756-8293.2.3.119 CrossRefGoogle Scholar
  25. 25.
    Ishihara, D., Horie, T., Denda, M.: A two-dimensional computational study on the fluid–structure interaction cause of wing pitch change in Dipteran flapping flight. J. Exp. Biol. 212, 1–10 (2009).  https://doi.org/10.1242/jeb.020404 CrossRefGoogle Scholar
  26. 26.
    Yin, B., Luo, H.: Effect of wing inertia on hovering performance of flexible flapping wings. Phys. Fluids 22, 111902-1–111902-10 (2010).  https://doi.org/10.1063/1.3499739 CrossRefGoogle Scholar
  27. 27.
    Dai, H., Luo, H., Doyle, J.: Dynamic pitching of an elastic rectangular wing in hovering motion. J. Fluid Mech. 693, 473–499 (2012).  https://doi.org/10.1017/jfm.2011.543 CrossRefzbMATHGoogle Scholar
  28. 28.
    Harbig, R., Sheridan, J., Thompson, M.: Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J. Fluid Mech. 717, 166–192 (2013).  https://doi.org/10.1017/jfm.2012.565 CrossRefzbMATHGoogle Scholar
  29. 29.
    Coe, R., Freeman, P., Mattingly, P.: Handbooks for the Identification of British Insects: Diptera 2. Nematocera: families Tipulidae to Chironomidae. vol. 9, pp. 1–216. Royal Entomological Society of London, London (1950)Google Scholar
  30. 30.
    Ellington, C.P.: The aerodynamics of hovering insect flight. II. Morphological parameters. Philos. Trans. R. Soc. Lond. B Biol. Sci. 305, 17–40 (1984).  https://doi.org/10.1098/rstb.1984.0050 CrossRefGoogle Scholar
  31. 31.
    Bao, X., Bontemps, A., Grondel, S., Cattan, E.: Design and fabrication of insect-inspired composite wings for MAV application using MEMS technology. J. Micromech. Microeng. 21, 1–16 (2011).  https://doi.org/10.1088/0960-1317/21/12/125020 CrossRefGoogle Scholar
  32. 32.
    SkyScan micro-CT scanner. Model 1172, Microphotonics, Allentown (2012)Google Scholar
  33. 33.
    Rubio, J., Schilling, P., Chakravarty, U.: A structural dynamic analysis of a crane fly forewing. In: Proceedings of 55th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, AIAA Paper No. 2014–1517, National Harbor, MD 20745, 13–17 Jan (2014).  https://doi.org/10.2514/6.2014-1517
  34. 34.
    SolidWorks.: Version 2013, Dassault Systemes, Waltham (2012)Google Scholar
  35. 35.
    Abaqus.: Version 6.12, Dassault Systemes, Providence (2011)Google Scholar
  36. 36.
    Wainwright, S., Biggs, W., Currey, J., Gosline, J.: Mechanical Design in Organisms, 1st edn. Princeton University Press, Princeton (1986)Google Scholar
  37. 37.
    Smith, C.W., Hebert, R., Wootton, R.J., Evans, K.E.: The hind wing of the desert locus (Schistocerca gregaria Forskal). II. Mechanical properties and functioning of the membrane. J. Exp. Biol. 203, 2933–2943 (2000)Google Scholar
  38. 38.
    Song, F., Lee, K.L.: Experimental studies of the material properties of the forewing of cicada (Homoptera, Cicadidae). J. Exp. Biol. 207, 3035–3042 (2004).  https://doi.org/10.1242/jeb.01122 CrossRefGoogle Scholar
  39. 39.
    Jin, T., Goo, N.S., Woo, S., Park, H.C.: Use of a digital image correlation technique for measuring the material properties of beetle wing. J. Bionic Eng. 6, 224–231 (2009).  https://doi.org/10.1016/s1672-6529(08)60105-5 CrossRefGoogle Scholar
  40. 40.
    Wootton, R.J., Evans, K.E., Herbert, R., Smith, C.W.: The hind wing of the desert locust (Schistocerca gregaria Forskal). I. Functional morphology and mode of operation. J. Exp. Biol. 203, 2921–2931 (2000)Google Scholar
  41. 41.
    Agrawal, A., Agrawal, S.: Design of bio-inspired flexible wings for flapping-wing micro-sized air vehicle applications. Adv. Robot. 23, 979–1002 (2009).  https://doi.org/10.1163/156855309X443133 CrossRefGoogle Scholar
  42. 42.
    Abaqus Analysis User Manual.: Version 6.12, Dassault Systemes, Providence (2011)Google Scholar
  43. 43.
    Tannehill, J., Anderson, D., Pletcher, R.: Computational Fluid Mechanics and Heat Transfer, 2nd edn. Taylor and Francis, Philadelphia (1997)zbMATHGoogle Scholar
  44. 44.
    SkyScan CT-Analyzer.: Version 1.13.2.1, Bruker MicroCT, Kontich (2012)Google Scholar
  45. 45.
    Inman, D.J.: Engineering Vibration, 3rd edn. Pearson Education Inc., Upper Saddle River (2007)zbMATHGoogle Scholar
  46. 46.
    White, F.: Viscous Fluid Flow, 2nd edn. McGraw-Hill Education, New York (1991)Google Scholar
  47. 47.
    Glück, M., Breuer, M., Durst, F., Halfmann, A., Rank, E.: Computation of fluid–structure interaction on lightweight structures. J. Wind Eng. Ind. Aerodyn. 89, 1351–1368 (2001).  https://doi.org/10.1016/s0167-6105(01)00150-7 CrossRefGoogle Scholar
  48. 48.
    Mengesha, T.E., Vallance, R.R., Barraja, M., Mittal, M.: Parametric structural modeling of insect wings. Bioinspir. Biomim. 4, 1–15 (2009).  https://doi.org/10.1088/1748-3182/4/3/036004 CrossRefGoogle Scholar
  49. 49.
    Mountcastle, A., Daniel, T.: Aerodynamic and functional consequences of wing compliance. Exp. Fluids 46, 873–882 (2009).  https://doi.org/10.1007/s00348-008-0607-0 CrossRefGoogle Scholar
  50. 50.
    Nakata, T., Liu, H.: Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. R. Soc. B. 279, 722–731 (2012).  https://doi.org/10.1098/rspb.2011.1023 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jose E. Rubio
    • 1
  • Paul J. Schilling
    • 1
  • Uttam K. Chakravarty
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of New OrleansNew OrleansUSA

Personalised recommendations