Advertisement

Acta Mechanica

, Volume 229, Issue 6, pp 2327–2341 | Cite as

On the nonlinear dynamics of shift gearbox models

  • Georg Jehle
  • Alexander Fidlin
Original Paper
  • 77 Downloads

Abstract

When the so-called eek effect emerges while shifting a vehicle shift gearbox, car drivers perceive audible noise and vibrations of drivetrain components. Some physical approaches have been provided in order to explain the effect as well as to search for countermeasures. In Jehle and Fidlin (ZAMM J Appl Math Mech 94(11):911–916 (2014), the interaction of sliding clutch disk and gears is addressed in a rigid body model. The clutch disk’s non-conservative follower forces in combination with geometric coupling in gears imply the action of non-symmetric restoring- and velocity-proportional forces. The desired motion of gearbox components can therefore undergo a mode-coupling flutter instability, out of which vibrations emerge with exponentially growing amplitudes. As the contacts in clutch and gears hold non-smooth transitions such as the possibility of sticking and opening, dynamic solutions are both limited and complex. In this contribution, first of all model details concerning the gear formulation are revised: rigid and viscoelastic normal contact are compared, which imply differences in the nature of the solution and method of stability analysis. Nevertheless the two approaches are shown to converge. Finally, the dynamics behind the loss of stability of the desired motion is investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jehle, G., Fidlin, A.: Friction induced vibrations in shift gearboxes. ZAMM J. Appl. Math. Mech. /Zeitschrift für Angewandte Mathematik und Mechanik. 94(11), 911–916 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hetzler, H.: Zur Stabilität von Systemen bewegter Kontinua mit Reibkontakten am Beispiel des Bremsenquietschens. Dissertation. Karlsruher Institut für Technologie (2008)Google Scholar
  3. 3.
    Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos—part II: dynamics and modeling. Appl. Mech. Rev. 47(7), 227–253 (1994)CrossRefGoogle Scholar
  4. 4.
    Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267(1), 105–166 (2003)CrossRefGoogle Scholar
  5. 5.
    Centea, D., Rahnejat, H., Menday, M.T.: Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations (judder). Appl. Math. Model. 25(3), 177–192 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Drexl, H.J.: Clutch judder: causes and countermeasures. In: Proceedings of Technical Conference SITEV; Vol. 90, pp. 7–46 (1990)Google Scholar
  7. 7.
    Hinrichs, N., Oestreich, M., Popp, K.: On the modelling of friction oscillators. J. Sound Vib. 216(3), 435–459 (1998)CrossRefGoogle Scholar
  8. 8.
    Kauderer, H.: Nichtlineare Mechanik. Springer, Berlin (1958)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Fidlin, A., Drozdetskaya, O., Waltersberger, B.: On the minimal model for the low frequency wobbling instability of friction discs. Eur. J. Mech. A Solids 30(5), 665–672 (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hervé, B., Sinou, J.J., Mahé, H., Jezequel, L.: Analysis of squeal noise and mode coupling instabilities including damping and gyroscopic effects. Eur. J. Mech. A Solids 27(2), 141–160 (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    Senatore, A., Hochlenert, D., d’Agostino, V., von Wagner, U.: Driveline dynamics simulation and analysis of the dry clutch friction-induced vibrations in the eek frequency range. In: ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers (2013)Google Scholar
  13. 13.
    Wickramarachi, P., Singh, R., Bailey, G.: Analysis of friction-induced vibration leading to ”eek” noise in a dry friction clutch. Noise Control Eng. J. 53(4), 138–144 (2005)CrossRefGoogle Scholar
  14. 14.
    Vahid-Araghi, O., Golnaraghi, F.: Friction-Induced Vibration in Lead Screw Drives. Springer, Berlin (2010)zbMATHGoogle Scholar
  15. 15.
    Lorang, X., Foy-Margiocchi, F., Nguyen, Q., Gautier, P.E.: TGV disc brake squeal. J. Sound Vib. 293(3), 735–746 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Fidlin, A., Stamm, W.: On the radial dynamics of friction disks. Eur. J. Mech. A Solids 28(3), 526–534 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Willner, K.: Kontinuums- und Kontaktmechanik: Synthetische und analytische Darstellung. Springer, Berlin (2013)Google Scholar
  18. 18.
    Caps, H., Dorbolo, S., Ponte, S., Croisier, H., Vandewalle, N.: Rolling and slipping motion of Euler’s disk. Phys. Rev. E 69(5), 056610 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Vielsack, P.: Regularisierung des Haftzustandes bei Coulombscher Reibung. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik. 76(8), 439–446 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Krylov, V.: Approximate Calculation of Integrals. The MacMillan Company, New York (1962)zbMATHGoogle Scholar
  21. 21.
    Jehle, G.: Zur Modellbildung und Simulation reibungserregter Schwingungen in Pkw-Schaltgetrieben. Dissertation. Karlsruher Institut für Technologie (2016)Google Scholar
  22. 22.
    Küçükay, F.: Dynamik der Zahnradgetriebe: Modelle, Verfahren, Verhalten. Springer, Berlin (1987)CrossRefGoogle Scholar
  23. 23.
    Litvin, F.: Gear Geometry and Applied Theory. PTR Prentice Hall, Upper Saddle River (1994)zbMATHGoogle Scholar
  24. 24.
    Klement, W.: Fahrzeuggetriebe. Carl Hanser Verlag München (2011)Google Scholar
  25. 25.
    Deppler, J., Braun, B., Fidlin, A., Hochbruck, M.: Convergence of viscoelastic constraints to nonholonomic idealization. Eur. J. Mech. A Solids 58, 140–147 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hagedorn, P., Stadler, W.: Non-linear Oscillations. Oxford University Press, Oxford (1988)Google Scholar
  27. 27.
    Debrabant, K.: Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden. Dissertation. Martin-Luther-Universität Halle-Wittenberg (2004)Google Scholar
  28. 28.
    Gantmacher, F., Hirsch, K.: The Theory of Matrices (English Translation), vol. 2. Chelsea Publishing Co., Chapman & Hall (2000)Google Scholar
  29. 29.
    Dresig, H., Fidlin, A.: Schwingungen mechanischer Antriebssysteme: Modellbildung, Berechnung, Analyse, Synthese. Springer, Berlin (2014)CrossRefGoogle Scholar
  30. 30.
    Dresig, H., Holzweißig, F.: Maschinendynamik. Springer, Berlin (2009)Google Scholar
  31. 31.
    Molerus, O.: Laufunruhige Drehzahlbereiche mehrstufiger Stirnradgetriebe. Dissertation. Technische Hochschule Karlsruhe (1963)Google Scholar
  32. 32.
    Nayfeh, A., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations