Acta Mechanica

, Volume 229, Issue 4, pp 1483–1501 | Cite as

Scattering of anti-plane shear waves by arbitrarily distributed circular cylinders in a functionally graded multiferroic fibrous composite

  • Hsin-Yi Kuo
  • Yu-An Huang
  • Chi-Hsiang Sun
Original Paper


In this work, a theoretical framework is developed for the multiple scattering of an anti-plane shear wave by a functionally graded multiferroic fibrous composite. The composite consists of arbitrarily distributed circular cylinders and may have different sizes and material constituents. The cylinders are exponentially graded along the radial direction. We exploit the multipole expansions, transition matrix, and Graf’s addition/binomial expansion theorems to obtain a complete solution of the multiple scattering problem in the scenario of functionally graded multiferroic composites. These solved magneto-electro-elastic fields are then used to obtain the directivity patterns of the scattered wave, dynamic stress (electric displacement/magnetic flux) concentration factors, and scattering cross sections. Numerical results reveal the profound influence of the functionally graded parameter, the material properties of constituent phases, the number of inclusions, as well as the frequency of a propagating SH wave on the scattered field induced by the functionally graded fibers. It is expected that the formulation and numerical results serve as useful references for the design and manufacture of functionally graded piezoelectric–piezomagnetic fibrous composites under dynamic loadings.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)zbMATHGoogle Scholar
  2. 2.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Academic Press, San Diego (2001)zbMATHGoogle Scholar
  3. 3.
    Bhangale, R.K., Ganesan, N.: Static analysis of simply supported functionally graded and layered magneto–electro-elastic plates. Int. J. Solids Struct. 43, 3230–3253 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bostock, M.G., Kennet, B.L.N.: Multiple scattering of surface waves from discrete obstacles. Geophys. J. Int. 108, 52–70 (1992)CrossRefGoogle Scholar
  5. 5.
    Cai, L.-W.: Scattering of antiplane shear waves by layered circular elastic cylinder. J. Acoust. Soc. Am. 115, 515–522 (2004)CrossRefGoogle Scholar
  6. 6.
    Chen, T., Kuo, H.-Y.: Transport properties of composites consisting of periodic arrays of exponentially graded cylinders with cylindrically orthotropic materials. J. Appl. Phys. 98, 033716 (2005)CrossRefGoogle Scholar
  7. 7.
    Chen, P., Shen, Y.: Propagation of axial shear magneto–electro-elastic waves in piezoelectric–piezomagnetic composites with randomly distributed cylindrical inhomogeneities. Int. J. Solids Struct. 44, 1511–1532 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, J., Pan, E., Chen, H.: Wave propagation in magneto–electro-elastic multilayered plates. Int. J. Solids Struct. 44, 1073–1085 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Du, J.K., Shen, Y.P., Ye, D.Y., Yue, F.R.: Scattering of anti-plane shear waves at a partially debonded magneto–electro-elastic circular cylindrical inhomogeneity. Int. J. Eng. Sci. 42, 887–913 (2004)CrossRefGoogle Scholar
  10. 10.
    Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)CrossRefGoogle Scholar
  11. 11.
    Kagemoto, H., Yue, D.K.P.: Interactions among multiple three-dimensional bodies in water wave: an exact algebraic method. J. Fluid Mech. 166, 189–209 (1986)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kanaun, S.K., Levin, V.M.: Propagation of shear elastic waves in composites with a random set of spherical inclusions (effective field approach). Int. J. Solids Struct. 42, 3971–3997 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kuo, H.-Y.: Multicoated elliptical fibrous composites of piezoelectric and piezomagnetic phases. Int. J. Eng. Sci. 49, 561–575 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kuo, H.-Y., Chen, Y.: Effective transport properties of arrays of multicoated or graded sphers with spherically transversely isotropic constituents. J. Appl. Phys. 99, 093702 (2006)CrossRefGoogle Scholar
  15. 15.
    Kuo, H.-Y., Yu, S.-H.: Effect of the imperfect interface on the scattering of SH wave in a piezoelectric cylinder in a piezomagnetic matrix. Int. J. Eng. Sci. 85, 186–202 (2014)CrossRefGoogle Scholar
  16. 16.
    Lanczos, C.: Linear Differential Operators. Van Nostrand, New York (1961)zbMATHGoogle Scholar
  17. 17.
    Levin, V.M., Michelitsch, T.M., Gao, H.: Propagation of electroacoustic waves in the transversely isotropic piezoelectric medium reinforced by randomly distributed cylindrical inhomogeneities. Int. J. Solids Struct. 39, 5013–5051 (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Li, J.Y., Dunn, M.L.: Anisotropic cooupled-field inclusion and inhomogeneity problems. Philos. Mag. A 77, 1341–1350 (1998)CrossRefGoogle Scholar
  19. 19.
    Liu, Y., Wu, R.-S., Ying, C.F.: Scattering of elastic waves by an elastic or viscoelastic cylinder. Geophys. J. Int. 142, 439–460 (2000)CrossRefGoogle Scholar
  20. 20.
    Liu, Q., Zhao, M., Zhang, C.: Antiplane scattering of SH waves by a circular cavity in an exponentially graded half space. Int. J. Eng. Sci. 78, 61–72 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Martin, P.A.: On functionally graded balls and cones. J. Eng. Math. 42, 133–142 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Martin, P.A.: Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    Martin, P.A.: Scattering by a cavity in an exponentially graded half-space. Trans. ASME J. Appl. Mech. 76, 031009 (2009)CrossRefGoogle Scholar
  24. 24.
    Mow, C.C., Pao, Y.H.: The Diffraction of Elastic Waves and Dynamic Stress Concentrations. Rand Corporation, Santa Monica (1971)Google Scholar
  25. 25.
    Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  26. 26.
    Pan, E.: Exact solution for simply supported and multilayered magneto–electro-elastic plates. J. Appl. Mech. 68, 608–618 (2001)CrossRefzbMATHGoogle Scholar
  27. 27.
    Piliposyan, D.G., Ghazaryan, K.B., Piliposian, G.T.: Internal resonances in a periodic magneto–electro-elastic strucure. J. Appl. Phys. 116, 044107 (2014)CrossRefGoogle Scholar
  28. 28.
    Sherer, S.E.: Scattering of sound from axisymmetric sources by multiple circular cylinders. J. Acoust. Soc. Am. 115, 488–496 (2004)CrossRefGoogle Scholar
  29. 29.
    Soh, A.K., Liu, J.X.: Interfacial shear horizontal waves in a piezoelectric–piezomagnetic bi-material. Philos. Mag. Lett. 86, 31–35 (2006)CrossRefGoogle Scholar
  30. 30.
    Sun, W.-H., Ju, G.-L., Pan, J.-W., Li, Y.-D.: Effects of the imperfect interface and piezoelectric/piezomagnetic stiffening on the SH wave in a multiferroic composite. Ultrasonics 51, 831–838 (2011)CrossRefGoogle Scholar
  31. 31.
    Suresh, S.: Graded materials for resistance to contact deformation and damage. Science 292, 2447–2451 (2001)CrossRefGoogle Scholar
  32. 32.
    Terrón, J.M., Salazar, A., Sánchez-Lavega, A.: General solution for the thermal wave scattering in fiber composites. J. Appl. Phys. 91, 1087–1098 (2002)CrossRefGoogle Scholar
  33. 33.
    Wang, Y.W., Chew, W.C.: A recursive T-matrix approach for the solution of electromagnetic scattering by many spheres. IEEE Trans. Antennas Propag. 41, 1633–1639 (1993)CrossRefGoogle Scholar
  34. 34.
    Wang, B.L., Mai, Y.-W., Niraula, O.P.: A horizontal shear surface wave in magneto–electro-elastic materials. Philos. Mag. Lett. 87, 53–58 (2007)CrossRefGoogle Scholar
  35. 35.
    Wang, X., Pan, E., Roy, A.K.: Scattering of antiplane shear wave by a piezoelectric circular cylinder with an imperfect interface. Acta Mech. 193, 177–195 (2007)CrossRefzbMATHGoogle Scholar
  36. 36.
    Wang, X., Sudak, L.J.: Scattering of elastic waves by multiple circular cylinders with imperfect interface. Waves Random Complex Media 17, 159–187 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations