Skip to main content
Log in

Saint-Venant torsion of arbitrarily shaped orthotropic composite or FGM sections by a hybrid finite element approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The purpose of this study is to calculate the torsional rigidity and maximum shear stresses of arbitrarily shaped orthotropic composite or functionally graded material sections on the basis of a hybrid finite element approach. A hybrid finite element based on a Hellinger–Reissner functional is presented. A set of numerical examples is solved to verify the proposed method, and a parametrical study is also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

Diameter

\(G_{zx},G_{zy}\) :

Shear modulus of elasticity

\(G_{zy}^b , G_{zy}^t\) :

Shear moduli at the bottom and top sides of an FGM section

GJ :

Torsional rigidity

\(Q_{x},\,Q_{y}\) :

Internal shear force components

T :

Torsional moment

\(\beta \) :

Torsional rigidity factor

\(\phi \) :

Saint-Venant’s stress function

\(\theta \) :

Angle of twist per unit length

\(\bar{{\tau }}_{\max }\) :

Maximum shear stress factor

[D]:

Differential operator matrix

[G]:

Nodal forces corresponding to assumed stress field

[N]:

Shape functions

[P]:

Interpolation matrix for stress

\(\{q\}\) :

Displacement components

\(\{w\}\) :

Displacements

\(\{\beta \}\) :

Stress parameters

\(\{\sigma \}\) :

Internal forces

References

  1. Irschik, H.: Analogies between bending of plates and torsion problem. J. Eng. Mech. 117(11), 2503–2508 (1991)

    Article  Google Scholar 

  2. Savoia, M., Tullini, N.: Torsional response of inhomogeneous and multilayered composite beams. Compos. Struct. 25, 587–594 (1993)

    Article  Google Scholar 

  3. Swanson, S.R.: Torsion of laminated rectangular rods. Compos. Struct. 42, 23–31 (1998)

    Article  Google Scholar 

  4. Li, Z., Ko, J.M., Ni, Y.Q.: Torsional rigidity of reinforced concrete bars with arbitrary sectional shape. Finite Elem. Anal. Des. 35, 349–361 (2000)

    Article  MATH  Google Scholar 

  5. Sapountzakis, E.J.: Nonuniform torsion of multi-material composite bars by the boundary element method. Comput. Struct. 79(32), 2805–2816 (2001)

    Article  Google Scholar 

  6. El Fatmi, R., Zenzri, H.: A numerical method for the exact elastic beam theory. Applications to homogeneous and composite beams. Int. J. Solids Struct. 41, 2521–2537 (2004)

    Article  MATH  Google Scholar 

  7. Najera, A., Herrera, J.M.: Torsional rigidity of non-circular bars in mechanisms and machines. Mech. Mach. Theory 40, 638–643 (2005)

    Article  MATH  Google Scholar 

  8. Darılmaz, K., Orakdogen, E., Girgin, K., Kucukarslan, S.: Torsional rigidity of arbitrarily shaped composite sections by hybrid finite element approach. Steel Compos. Struct. 7(3), 241–251 (2007)

    Article  Google Scholar 

  9. Rongqiao, X., Jiansheng, H., Weiqiu, C.: Saint-Venant torsion of orthotropic bars with inhomogeneous rectangular cross section. Compos. Struct. 92, 1449–1457 (2010)

    Article  Google Scholar 

  10. Li, M., Wu, L., Ma, L., et al.: Torsion of carbon fiber composite pyramidal core sandwich plates. Compos. Struct. 93(9), 2358–2367 (2011)

    Article  Google Scholar 

  11. Barretta, R.: On the relative position of twist and shear centres in the orthotropic and fiberwise homogeneous Saint-Venant beam theory. Int. J. Solids Struct. 49, 3038–3046 (2012)

    Article  Google Scholar 

  12. Barretta, R.: On Cesaro–Volterra method in orthotropic Saint-Venant beam. J. Elast. 112, 233–253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under torsion. Acta Mech. 224(12), 2955–2964 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under flexure. Acta Mech. 225(7), 2075–2083 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jog, C.S., Imrankhan, S.M.: A finite element method for the Saint-Venant torsion and bending problems for prismatic beams. Comput. Struct. 135, 62–72 (2014)

    Article  Google Scholar 

  16. Barretta, R., Feo, L., Luciano, R.: Some closed-form solutions of functionally graded beams undergoing nonuniform torsion. Compos. Struct. 123, 132–136 (2015)

    Article  Google Scholar 

  17. Barretta, R., Luciano, R., Willis, J.R.: On torsion of random composite beams. Compos. Struct. 132, 915–922 (2015)

    Article  Google Scholar 

  18. Teimoori, H., Faal, R.T., Das, R.: Saint-Venant torsion analysis of bars with rectangular cross-section and effective coating layers. Appl. Math. Mech. 37(2), 237–252 (2016)

    Article  MathSciNet  Google Scholar 

  19. Taheri, F., Hematiyan, M.R.: Torsional analysis of hollow members with sandwich wall. J. Sandw. Struct. Mater. 19(3), 317–347 (2017)

    Article  Google Scholar 

  20. Pian, T.H.H., Chen, D.P.: Alternative ways for formulation of hybrid stress elements. Int. J. Numer. Methods Eng. 18, 1679–1684 (1982)

    Article  MATH  Google Scholar 

  21. Gendy, A.S., Saleeb, A.F., Chang, T.Y.P.: Generalized thin-walled beam models for flexural-torsional analysis. Comput. Struct. 42(4), 531–550 (1992)

    Article  Google Scholar 

  22. Darılmaz, K.: An assumed-stress finite element for static and free vibration analysis of Reissner–Mindlin plates. Struct. Eng. Mech. 19(2), 199–215 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konuralp Girgin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darılmaz, K., Orakdöğen, E. & Girgin, K. Saint-Venant torsion of arbitrarily shaped orthotropic composite or FGM sections by a hybrid finite element approach. Acta Mech 229, 1387–1398 (2018). https://doi.org/10.1007/s00707-017-2067-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2067-1

Navigation